Security and Trust I: 4. Flow Security

Dusko Pavlovic

UHM ICS 355 Fall 2014 ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ●

Outline

Covert channels and flows

Possibilistic models

Probabilistic models

Quantifying noninterference

What did we learn?

ICS 355: Introduction Dusko Pavlovic

Possibilistic

Probabilistic

Quantifying

Lesson

・ロト・日本・モート ヨー もくの

Outline

Covert channels and flows	
Interference	
Definition of covert char	nnel
Examples	
Possibilistic models	
Probabilistic models	

Quantifying noninterference

What did we learn?

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition

Examples

Possibilistic

Probabilistic

Quantifying

Lesson

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Elevator model

- Q = {floor0, floor1}
- ▶ $I_k = \{k:call0, k:call1\}, k \in \mathbb{L} = \{Alice, Bob\}$
- O = {go0, go1, stay}

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Elevator interference

The histories

(A:call0 B:call1) and (A:call1 B:call1)

are for Bob

- indistinguishable by the inputs, since he only sees
 Bob:call1 in both of them, yet they are
- distinguishable by the outputs, since Bob's channel outputs are
 - ► (A:call0 B:call1) → go1
 - ► (A:call1 B:call1) → stay

ICS 355: Introduction

Dusko Pavlovic

Covert Interference Definition Examples Possibilistic Probabilistic Quantifying

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

Question

How does Bob really use the interference?

▲□▶▲□▶▲□▶▲□▶ □ のへの

Answer

He derives another channel

{A:call0, A:call1, B:call0, B:call1}⁺ \rightarrow {stay, go}

 $\{B:call0, B:call1\}^+ \rightarrow \{A_home, A_out\}$

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Answer

He derives another channel

{A:call0, A:call1, B:call0, B:call1}⁺ \rightarrow {stay, go}

 $\{B:call0, B:call1\}^+ \rightarrow \{A_home, A_out\}$

This is a *covert channel*.

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Different flows

- ► {A:call0, A:call1, B:call0, B:call1}⁺ → {stay, go} makes Alice and Bob flow through the elevator
- ► {B:call0, B:call1}⁺ → {A_home, A_out} makes the information about Alice flow to Bob

ICS 355: Introduction

Dusko Pavlovic

Covert Interference Definition Examples Possibilistic Probabilistic Quantifying

Lesson

・ロト・西ト・西ト・日・ ウヘぐ

Intuition

The *flow* of a channel is the observed traffic that flows through it

(water flow, information flow, traffic flow...)

ICS 355: Introduction

Dusko Pavlovic

Interference Definition Examples Possibilistic Probabilistic

Covert

Quantifying

Lesson

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Flow vs channel

- A deterministic unshared channel implements a single flow. There are two usages
 - either the channel $I^+ \stackrel{f}{\rightarrow} O$ induces the flow $I^* \stackrel{f}{\rightarrow} O^*$
 - or the history \vec{x} induces the flow $\vec{f}(\vec{x})$ along the channel $I^+ \stackrel{f}{\rightarrow} O$

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Flow vs channel

- A deterministic unshared channel implements a single flow. There are two usages
 - either the channel $I^+ \stackrel{f}{\rightarrow} O$ induces the flow $I^* \stackrel{\tilde{f}}{\rightarrow} O^*$
 - or the history \vec{x} induces the flow $\vec{f}(\vec{x})$ along the channel $I^+ \stackrel{f}{\rightarrow} O$
- A deterministic *shared* channel $I^+ \stackrel{\tilde{f}}{\rightarrow} O$ contains the flows $I_k^* \stackrel{\tilde{f}_k}{\rightarrow} O^*$.
 - The mapping $I^* \stackrel{\vec{f}}{\rightarrow} O^*$ is a flow only if there is a global observer.

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Flow vs channel

- A deterministic unshared channel implements a single flow. There are two usages
 - either the channel $I^+ \stackrel{f}{\rightarrow} O$ induces the flow $I^* \stackrel{\tilde{f}}{\rightarrow} O^*$
 - or the history \vec{x} induces the flow $\vec{f}(\vec{x})$ along the channel $I^+ \stackrel{f}{\rightarrow} O$
- A deterministic *shared* channel $I^+ \stackrel{\vec{f}}{\rightarrow} O$ contains the flows $I_k^* \stackrel{\vec{f}_k}{\rightarrow} O^*$.
 - The mapping *I*[∗] → *O*[∗] is a flow only if there is a global observer.
- A possibilistic channel I⁺ ^f ~ ØO contains multiple deterministic channels which induce the possible flows

く ロ ト 4 母 ト 4 目 ト 4 日 ト 4 日 ト 4 日 ト

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

In general, any user *k* who seeks the interferences in a shared channel \vec{f} builds a derived *interference channel* \hat{f}_k

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

In general, any user *k* who seeks the interferences in a shared channel \vec{f} builds a derived *interference channel* \hat{f}_k

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference Definition

Examples

Possibilistic

Probabilistic

Quantifying

Lesson

On the input \vec{x}_k the interference channel \hat{f}_k outputs a *possible* output $\vec{f}_k(\vec{y})$, where $\vec{y} \upharpoonright_k = \vec{x}_k$, i.e. \vec{y} is a *possible world* for \vec{x}_k .

Remark

- $\widehat{f_k}$ is not a deterministic channel.
- Nondeterministic channels may be
 - possibilistic $I^+ \rightarrow \mathcal{O}_* O \subset \{0, 1\}^O$
 - probabilistic $I^+ \rightarrow \Upsilon O \subset [0, 1]^O$
 - quantum $I_+ \rightarrow \Theta O \subset \{z \in \mathbb{C} \mid |z| \le 1\}^O$

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Remark

- $\widehat{f_k}$ is not a deterministic channel.
- Nondeterministic channels may be
 - possibilistic $I^+ \rightarrow \mathcal{O}_* O \subset \{0, 1\}^O$
 - probabilistic $I^+ \rightarrow \Upsilon O \subset [0, 1]^O$
 - quantum $I_+ \rightarrow \Theta O \subset \{z \in \mathbb{C} \mid |z| \le 1\}^O$

(We define the possibilistic and the probabilistic versions later, and do not study the quantum channels here.)

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lemma

A channel $I^* \xrightarrow{\vec{f}} O^*$ satisfies the noninterference requirement for *k* if and only if the induced interference channel $I_k^+ \xrightarrow{\hat{f}_k} \mathcal{D}O$ is deterministic, i.e. emits at most one output for every input.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Covert channel

Definition

Given a shared channel f, a *covert channel* f is derived from f by one or more subjects in order to implement different flows from those specified for f. ICS 355: Introduction

Dusko Pavlovic

Covert Interference Definition Examples Possibilistic Probabilistic Quantifying

Covert channel

Remarks

- The covert channels in the literature usually extract the *information* about the interference.
- If channels model any resource use in general, then covert channels model any covert resource use, or abuse.
- Many familiar information flow attack patterns apply to other resources besides information.
- Modeling the information flows in a broader context of resource flows seems beneficial both for information security and for resource security.

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

TSA liquid requirement

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

No more than 3.4oz of liquid carried by passengers.

・ロト・西ト・西ト・日・ ウヘぐ

TSA checkpoint process

- Q = {check, board, halt}
- L = {passenger < agent}</p>
- I_p = {p:c≤3.4, p:c>3.4}
- I_a = {a:next}
- O = {c, 0, reset}

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

TSA checkpoint breach

A group of passengers can form a covert channel by adding

- a new security level for bombers
- a new state **bomb** and
- a new transition where the bombers pool their resources

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

TSA checkpoint breach

A group of passengers can form a covert channel by adding

- a new security level for bombers
- a new state **bomb** and
- a new transition where the bombers pool their resources

Attack: *n* subjects with a clearance **b** join their liquids together into a container **B** to get up to $n \times 3.4$ oz of liquid.

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

TSA checkpoint with covert channel

- Q = {check, board, halt, bomb}
- ▶ L = {passenger < agent, passenger < bomber}</p>
- I_p = {p:c≤3.4, p:c>3.4}
- I_a = {a:next}
- $I_b = \{b:B=B+c\}$
- O = {c, B, 0, reset}

ICS 355:

Introduction

Fortress gate

- The fortress wall prevents entry into the city.
- The fortress gate is an entry channel which
 - stops soldiers with weapons
 - lets merchants with merchandise

Dusko Pavlovic

Covert Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Fortress gate process

- Q = {gate, city, jail}
- L = {visitor < guard}</p>
- I_v = {v:mer, v:wep}
- I_g = {g:next}
- O = {mer, wep, 0, reset}

θ: city v:merimer 0;net gate ".Web, 9. next reset halt

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples Possibilistic Probabilistic Quantifying Lesson

Fortress gate breach

The attackers form a covert channel by adding

- new security classes soldier and Ulysses
- new actions
 - troj(wep): hide a weapon into a merchandise
 - extr(mer): extract a hidden weapon
 - call: call soldiers to kill
- new states to
 - prepare for the attack
 - kill the inhabitants
- new transitions
 - ▶ prep→gate
 - ▶ gate→prep
 - ▶ city→kill

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Fortress gate breach with Trojan horse

- Q = {gate, city, jail, prep, kill}
- ▶ L = {visitor < guard, visitor < soldier < Ulysses}
- I_v = {v:mer, v:wep}
- I_g = {g:next}
- ► I_s = {s:mer, s:extr(mer), s:wep, s:troj(wep)}
- $I_U = \{U:call\}$
- O = {mer, wep, 0, reset,

Trojan horse

ICS 355: Introduction

Dusko Pavlovic

Covert Interference Definition Examples Possibilistic Probabilistic Quantifying Lesson

A covert channel tunneled through a functional and authenticated channel

Trojan horse

The same attack pattern applies for most channel types

Introduction Dusko Pavlovic

Covert

ICS 355:

Definition Examples Possibilistic Probabilistic Quantifying Lesson

The authentication is often realized through social engineering.

Resource security beyond policies

- Norms and policies are established to assure the behaviors of the *specified* subjects participating in a *specified* process
 - Access control limits the interactions through specified channels.
 - Noninterference also limits the interactions through unspecified channels.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Resource security beyond policies

- But sometimes (in networks) you don't know
 - who you are sharing a resource with, or
 - what exactly is the process of sharing

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Resource security beyond policies

- But sometimes (in networks) you don't know
 - who you are sharing a resource with, or
 - what exactly is the process of sharing
- The external influences of unspecified subjects in unknown roles can only be observed as nondeterminism:
 - possibilistic, or
 - probabilistic

ICS 355: Introduction

Dusko Pavlovic

Covert

Interference

Definition Examples

Possibilistic

Probabilistic

Quantifying

Outline

Covert channels and flows

Possibilistic models

Probabilistic models

Quantifying noninterference

What did we learn?

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall interference channel

 Shared deterministic flows induce posibilistic channels

ż

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying
Recall interference channel

 Shared deterministic flows induce posibilistic channels

1* Î __*

$$\frac{I \rightarrow O}{I_k^* \quad \frac{\widehat{f}_k}{K} \quad \wp O}$$

$$\vec{x}_k \quad \longmapsto \quad \left\{ \vec{f}_k \left(\vec{y} \right) \mid \vec{y} \upharpoonright_k = \vec{x}_k \right\}$$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

- The interferences at the level k of the deterministic channel Q are observed as the possibility of multiple different outputs on the same local input.
 - A deterministic channel *f* satisfies the noninterference requirement at the level *k* if and only if the interference channel f_k is deterministic.

Possibilistic channels

Example: Car rental process

- ► Q= ℘(Cars)
- ► $I_k = \{k:get,k:ret\}, k \in \mathbb{L} = Customers$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Possibilistic channels

Example: Car rental channel

When a subject *k* requests a car, the cars that she may *possibly* get depend on the other subjects' requests:

$$\{ \text{k:get, k:ret} \mid k \in \mathbb{L} \}^+ \to \mathscr{O} (\text{Cars}) \\ \vec{x} @ \text{k:get} \longmapsto Y_{\vec{x}} \subseteq \text{Cars}$$

where $Y_{\vec{x}} = \text{Cars} \setminus (\text{gotten out in } \vec{x} \setminus \text{returned back in } \vec{x})$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic Probabilistic

Topapinstic

Quantifying

Possibilistic channels

Example: Car rental channel

When a subject *k* requests a car, the cars that she may *possibly* get depend on the other subjects' requests:

$$\{ \text{k:get, k:ret} \mid k \in \mathbb{L} \}^+ \rightarrow \mathscr{O} (\text{Cars}) \\ \vec{x} @ \text{k:get} \longmapsto Y_{\vec{x}} \subseteq \text{Cars}$$

where $Y_{\vec{x}} = \text{Cars} \setminus (\text{gotten out in } \vec{x} \setminus \text{returned back in } \vec{x})$ The interference is unavoidable.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic Probabilistic

Quantifying

Definition

A possibilistic channel with

- the inputs (or actions) from A
- the outputs (or observations) from B

is a relation

$$f : A^+ \to \wp B$$

which is prefix closed, in the sense that

$$f(\vec{x}@a) \neq \emptyset \implies f(\vec{x}) \neq \emptyset$$

holds for all $\vec{x} \in A^+$ and $a \in A$.

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic

Probabilistic

Quantifying

Lesson

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ へ ○

Notation

For a possibilistic channel $I^+ \xrightarrow{f} \mathcal{O}O$, we write

$$\vec{x} \vdash_f y$$
 when $y \in f(\vec{x})$

Possibilistic

Covert

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Notation

For a possibilistic channel $I^+ \stackrel{f}{\rightarrow} \mathcal{O}O$, we write

$$\vec{x} \vdash_f y$$
 when $y \in f(\vec{x})$

When there is just one channel, or *f* is clear from the context, we elide the subscript and write

$$\vec{x} \vdash y$$
 when $y \in f(\vec{x})$

ICS 355: Introduction Dusko Pavlovic Covert

Possibilistic

Probabilistic

Quantifying

Lesson

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ へ ○

Definition

A possibilistic channel with

- the inputs (or actions) from A
- the outputs (or observations) from B

is a relation

$$\vdash \subseteq A^+ \times B$$

which is prefix closed, in the sense that

$$\exists z. \ \vec{x} @a \vdash z \implies \exists y. \ \vec{x} \vdash y$$

holds for all $\vec{x} \in A^+$ and $a \in A$.

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic

Probabilistic

Quantifying

Lesson

・ロト・日本・日本・日本・日本・日本

(Possibilistic state machines and processes)

Definition

A possibilistic state machine is a map

$$Q \times I \xrightarrow{Nx} \mathcal{O}(Q \times O)$$

where Q, I, O are finite sets.

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(Possibilistic state machines and processes)

Definition

A possibilistic state machine is a map

$$Q \times I \xrightarrow{Nx} \mathcal{O}(Q \times O)$$

where Q, I, O are finite sets.

A *possibilistic process* is a possibilistic state machine with a chosen initial state.

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

(Possibilistic state machines and processes)

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remark

Possibilistic processes do not in general induce possibilistic channels.

Possibilisitc output machines and processes

Definition

A possibilistic output machine is a map

$$Q \times I \xrightarrow{\theta} Q \times \wp C$$

where *Q*, *I*, *O* are finite sets.

A *possibilistic output process* is a possibilistic output machine with a chosen initial state.

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Possibilistic output machines and processes)

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

Remark

Possibilistic output processes induce possibilistic channels.

・ロト・日本・日本・日本・日本・日本

Trace representation

$$\frac{q \in Q \qquad Q \times I \xrightarrow{\theta} Q \times \wp O}{I^* \to \wp O}$$
$$\frac{I^* \to \wp O}{I^* \times I \xrightarrow{\theta^*} I^* \times \wp O}$$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Memory

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

• A possibilistic channel with no memory is a binary relation $A \rightarrow \wp B$.

Flows through a possibilistic channel

Definition

The *flow* through a channel $f : A^* \to \wp B$ is a partial function

$$\vec{f}_{\bullet}$$
 : $A^* \to B^*$

such that

$$\vec{f}_{\bullet}() = ()$$
 and
 $\vec{f}_{\bullet}(\vec{x}) \downarrow \land \exists b. \ \vec{x} @a \vdash_{f} b \iff \vec{f}_{\bullet}(\vec{x} @a) = \vec{f}_{\bullet}(\vec{x}) @b$

holds for all $\vec{x} \in A^*$ and $a \in A$.

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Possibilistic channels and flows

Remark

- Specifying a deterministic channel was equivalent to specifying a deterministic flow.
- Every possibilistic channel induces many flows.

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Possibilistic channels in computation

- Bob and Charlie using the same network at the same clearance level may enter the same inputs in parallel, and observe several outputs at once.
- The possible multiple outputs may be observed by entering the same inputs
 - sequentially or
 - ▶ in parallel.
- The actual computations are abstracted away from the channels.

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic Probabilistic Quantifying Lesson

Possibilistic channels in computation

- Bob enters his inputs into the channel, and observes the interferences with Alice's inputs as the multiple possible outputs.
 - He observes the interference as the different results of the same local actions.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Possibilistic channels in computation

- Bob enters his inputs into the channel, and observes the interferences with Alice's inputs as the multiple possible outputs.
 - He observes the interference as the different results of the same local actions.
- In network computation, the subjects usually don't even know each other.
 - The different possibilities are viewed as the *external* choices made by the unobservable environment.

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic Probabilistic

Quantifying

A user of a deterministic channel could recognize interference by observing different outputs on the same input:

$$\frac{I^+ \stackrel{\vec{f}}{\rightarrow} O}{I_k^* \stackrel{\widehat{f}_k}{\rightarrow} \wp O}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

A user of a deterministic channel could recognize interference by observing different outputs on the same input:

$$\frac{I^+ \stackrel{\vec{f}}{\rightarrow} O}{I_k^* \stackrel{\widehat{f}_k}{\rightarrow} \wp O}$$

ICS 355:

Probabilistic

Quantifying

Lesson

A user of a possibilistic channel can always expect different outputs of the same input:

$$\frac{I^+ \stackrel{\vec{f}}{\rightharpoondown} \wp O}{I_k^* \stackrel{\widehat{f}_k}{\twoheadrightarrow} \wp O}$$

A user of a deterministic channel could recognize interference by observing different outputs on the same input:

$$\frac{I^+ \stackrel{\vec{f}}{\rightarrow} O}{I_k^* \stackrel{\widehat{f}_k}{\rightarrow} \wp O}$$

100 255

Possibilistic

Probabilistic

Quantifying

Lesson

A user of a possibilistic channel can always expect different outputs of the same input:

$$\frac{I^+ \stackrel{\vec{f}}{\rightarrow} \wp O}{I_k^* \stackrel{\widehat{f}_k}{\rightarrow} \wp O}$$

- The user does not even know who she interferes with
- The environment makes the "external choices"

Possibilistic channels arise in nature

Possibilistic models are too crude for security.

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Outline

Covert channels and flows

Possibilistic models

Probabilistic models

Quantifying noninterference

What did we learn?

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Probabilistic channels

Example: Car rental channel

When a subject *k* requests to rent a car, the cars that she will *probably* get depend on the other subjects' requests, *and* on the habits of the channel

$$\{ \text{k:get, k:ret} \mid k \in \mathbb{L} \}^+ \quad \rightarrow \quad \Upsilon \text{ (Cars)} \\ \vec{x} @ \text{ k:get} \quad \longmapsto \quad Y_{\vec{x}}$$

where $Y_{\vec{x}}$ is a random selection from

Cars \ (Taken in \vec{x} \ Returned in \vec{x})

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying

Probabilistic channels

Example: Car rental process

- ► Q= ℘(Cars)
- ► $I_k = \{k:get,k:ret\}, k \in \mathbb{L} = Customers$
- $O = Cars \cup Invoices \cup {Out}$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Definitions we'll need

A *partial random element X* over a countable set *A* is given by a subprobability distribution v_X over *A*, i.e. a function

$$v_X : A \rightarrow [0,1]$$

such that $\sum_{x \in A} v(x) \leq 1$.

ICS 355: Introduction Dusko Pavlovic Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definitions we'll need

A partial random element X over a countable set A is given by a subprobability distribution v_X over A, i.e. a function

$$v_X : A \rightarrow [0,1]$$

such that $\sum_{x \in A} v(x) \leq 1$.

We usually write

$$\upsilon_X(x) = \upsilon(X = x)$$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

・ロト・日本・日本・日本・日本・日本

Definitions we'll need

The set of all partial random elements over the set X is

$$\Upsilon A = \left\{ \upsilon(X=-) : A \to [0,1] \mid \sum_{x \in A} \upsilon(X=x) \le 1 \right\}$$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definitions we'll need

A partial random function is a function $f : A \to \Upsilon B$.

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A probabilistic channel with

- the inputs (or actions) from A
- the outputs (or observations) from B

is partial random function

$$f : A^+ \to \Upsilon B$$

which is prefix closed, in the sense that

$$\sum_{z \in B} v(f(\vec{x} @ a) = z) \leq \sum_{y \in B} v(f(\vec{x}) = y)$$

for all $\vec{x} \in A^+$ and $a \in A$.

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying

Lesson

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Notation

For a probabilistic channel $I^+ \stackrel{f}{\rightarrow} \Upsilon O$, we write

$$\begin{bmatrix} \vec{x} \vdash_f y \end{bmatrix} = v(f(\vec{x}) = y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Notation

For a probabilistic channel $I^+ \stackrel{f}{\rightarrow} \Upsilon O$, we write

$$\begin{bmatrix} \vec{x} \vdash_f y \end{bmatrix} = v(f(\vec{x}) = y)$$

When there is just one channel, or *f* is clear from the context, we elide the subscript and write

$$\begin{bmatrix} \vec{x} \vdash y \end{bmatrix} = v(f(\vec{x}) = y)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Notation

For a probabilistic channel $I^+ \stackrel{f}{\rightarrow} \Upsilon O$, we write $\begin{bmatrix} \vec{x} \vdash Y \end{bmatrix}$ and view *Y* as the source where

$$v(Y = y) = v(f(\vec{x}) = y)$$

for the given history $\vec{x} \in I^+$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A probabilistic channel with

- the inputs (or actions) from A
- the outputs (or observations) from B

is a partial random element

 $\begin{bmatrix} - \vdash - \end{bmatrix} \in \Upsilon(A^+ \times B)$

which is prefix closed, in the sense that

$$\sum_{z \in B} \left[\vec{x} @a \vdash z \right] \leq \sum_{y \in B} \left[\vec{x} \vdash y \right]$$

holds for all $\vec{x} \in A^+$ and $a \in A$.

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying

Lesson

・ロト・西ト・モン・モー もくの
Memory

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

• A probabilistic channel with no memory is a partial random function $A \rightarrow \Upsilon B$.

Information theoretic channel

Any probabilistic channel can be extended

$$\frac{I^{+} \stackrel{f}{\rightarrow} \Upsilon O}{\Upsilon (I^{+}) \stackrel{\overline{f}}{\longrightarrow} \Upsilon O} \\
\frac{\overline{X} \longmapsto Y}{\vec{X} \longmapsto Y}$$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

where

$$\upsilon(Y = y) = \sum_{\vec{x} \in I^+} \upsilon(\vec{X} = \vec{x}) \cdot \upsilon(f(\vec{x}) = y)$$

Information theoretic channel

Notation

The extensions align with the usual information theoretic channel notation

$$\left[X_1, X_2, \ldots, X_n \vdash Y\right] = \upsilon\left(\overline{f}(X_1, X_2, \ldots, X_n) = Y\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Probabilistic interference channel

Shared channels induce interference channels

$$\frac{I^+ \stackrel{[+]}{\longrightarrow} \Upsilon O}{I_k^+ \stackrel{[+]_k}{\longrightarrow} \Upsilon O}$$

where

$$\begin{bmatrix} \vec{x}_k \vdash y \end{bmatrix}_k = \sum_{\vec{x} \in I^+} \upsilon(\vec{x}_k = \vec{x} \upharpoonright_k) \cdot \begin{bmatrix} \vec{x} \vdash y \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Probabilistic interference channel

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

Probabilistic interference is exploited through Bayesian inference.

・ロト・日本・モート ヨー もくの

Example: Car rental process

- ► Q= ℘(Cars), Cars = {9 toyotas, 1 porsche}
- ▶ $I_k = \{k:get(x), k:ret(x)\}, k \in \{Alice, Bob\} \cup Others, x \in Cars$

ICS 355:

Introduction Dusko Pavlovic

Covert Possibilistic

Probabilistic

Quantifying

Covert channel

- Bob wonders whether Alice is in town.
 - She always rents a car.
- Bob knows that Alice likes to rent the porsche.
 - She does not get it one in 5 times.
- Bob requests a rental and gets the porsche.
 - How likely is it that Alice is in town?

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bob considers the following events

- a: Alice has rented a car
 - Alice:get(car) occurs in \vec{x}
- m: The porsche is available
 - Bob:get(porsche) results in porsche $\leftarrow Y_{\vec{x}}$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bob's beliefs

- $v(m \mid a) = \frac{1}{5}$
 - If Alice is in town, then the chance that the porsche is available is ¹/₅.

$$\quad \mathbf{v}(m \mid \neg a) = \frac{9}{10}$$

 If Alice is not in town, then the chance that the porsche is available is ⁹/₁₀.

▶ $v(a) = \frac{1}{2}$

A priori, the chance that Alice is in town is 50-50.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction Dusko Pavlovic Covert

Possibilistic

Probabilistic

Quantifying

Bob's reasoning

$$\upsilon(a \mid m) = \frac{\upsilon(a,m)}{\upsilon(m)}$$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Bob's reasoning

►
$$v(a \mid m) = \frac{v(a,m)}{v(m)}$$

► $v(a,m) = v(m|a) \cdot v(a) = \frac{1}{5} \cdot \frac{1}{2} = \frac{1}{10}$
► $v(m) = v(a,m) + v(\neg a,m)$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

Bob's reasoning

•
$$v(a \mid m) = \frac{v(a,m)}{v(m)}$$

• $v(a,m) = v(m|a) \cdot v(a) = \frac{1}{5} \cdot \frac{1}{2} = \frac{1}{10}$
• $v(m) = v(a,m) + v(\neg a,m)$
• $v(m,\neg a) = v(m|\neg a) \cdot v(\neg a) = \frac{9}{10} \cdot \frac{1}{2} = \frac{9}{20}$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

Bob's reasoning

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

Bob's reasoning

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

Bob's reasoning

If the porsche is available, then the chance that Alice is in town is 2 in 11.

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Bob's learning

- Bob's input information (or prior belief) before renting the car was that the chance that Alice was in town was ¹/₂.
- Bob's channel information (or posterior belief) after renting the car was that the chance that Alice was in town was ²/₁₁.

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Quantifying noninterference

A channel satisfies the k-noninterference requirement if k learns nothing from using it:

channel information = input information

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic

Probabilistic

Quantifying

Quantifying noninterference

A channel satisfies the k-noninterference requirement if k learns nothing from using it:

posterior belief = prior belief

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Quantifying noninterference

A channel satisfies the k-noninterference requirement if k learns nothing from using it:

posterior belief = prior belief

The degree of the channel noninterference is

 $\frac{\text{posterior belief}}{\text{prior belief}} \le 1 \quad \text{or} \quad \frac{\text{prior belief}}{\text{posterior belief}} \le 1$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Quantifying noninterference

A channel satisfies the k-noninterference requirement if k learns nothing from using it:

posterior belief = prior belief

The degree of the channel noninterference is

$$\frac{\frac{2}{11}}{\frac{1}{2}} = \frac{4}{11}$$

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Outline

Covert channels and flows

Possibilistic models

Probabilistic models

Quantifying noninterference

What did we learn?

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall noninterference

Definition

A shared deterministic channel $I^+ \stackrel{f}{\rightarrow} O$ satisfies the *noninterference* requirement at the level *k* if for all states of the world $\vec{x}, \vec{y} \in I^*$ holds

$$\vec{x} \lfloor k \rfloor \vec{y} \implies \vec{x} \lceil f_k \rceil \vec{y}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

where

$$\vec{x} \lfloor k \rfloor \vec{y} \iff \vec{x} \restriction_k = \vec{y} \restriction_k$$
$$\vec{x} \lceil f_k \rceil \vec{y} \iff f_k(\vec{x}) = f_k(\vec{y})$$

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying Lesson

Recall noninterference

Definition

A shared deterministic channel $I^+ \stackrel{f}{\rightarrow} O$ satisfies the *noninterference* requirement at the level *k* if for all states of the world $\vec{x}, \vec{y} \in I^*$ holds

$$\vec{x} \lfloor k \rfloor \vec{y} \implies \vec{x} \lceil f_k \rceil \vec{y}$$

where

 $\vec{x} \lfloor k \rfloor \vec{y} \iff \vec{x} \upharpoonright_k = \vec{y} \upharpoonright_k \qquad \text{$\mbox{input view}$}$ $\vec{x} \lceil f_k \rceil \vec{y} \iff f_k(\vec{x}) = f_k(\vec{y}) \qquad \text{$\mbox{channel view}$}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying Lesson

Quantified noninterference

Definition

A shared probabilistic channel $I^+ \stackrel{f}{\rightarrow} \Upsilon O$ satisfies the *noninterference* requirement at the level *k* if for all states of the world $\vec{x}, \vec{y} \in I^*$ holds

$$\vec{x} \lfloor k \rfloor \vec{y} \leq \vec{x} \lceil f_k \rceil \vec{y}$$

where

$$\vec{x} \lfloor k \rfloor \vec{y} = \bigwedge_{\vec{x}_k \in I_k^+} \frac{\upsilon \left(\vec{x} \restriction_k = \vec{x}_k \right)}{\upsilon \left(\vec{y} \restriction_k = \vec{x}_k \right)}$$
$$\vec{x} \lceil f_k \rceil \vec{y} = \bigwedge_{z \in O} \frac{\upsilon \left(f_k(\vec{x}) = z \right)}{\upsilon \left(f_k(\vec{y}) = z \right)}$$

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Quantified interference

Definition

The amount of interference that a user at the level *k* of the shared probabilistic channel $I^+ \stackrel{f}{\rightarrow} \Upsilon O$ can extract to distinguish the histories $\vec{x}, \vec{y} \in I^+$ is

$$\begin{split} \iota(\vec{x}, \vec{y}) &= -\log |\frac{\vec{x} \lfloor k \rfloor \vec{y}}{\vec{x} \lceil f_k \rceil \vec{y}}| \\ &= \left| \log \left(\vec{x} \lfloor k \rfloor \vec{y} \right) - \log \left(\vec{x} \lceil f_k \rceil \vec{y} \right) \right| \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where...

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic

Quantifying

Notation

The normalized ratio is defined

$$\frac{x}{y} = \begin{cases} \frac{x}{y} & \text{if } x \le y \\ \frac{y}{x} & \text{if } x > y \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic

Quantifying

Notation

The normalized ratio is defined

$$\frac{x}{y} = \begin{cases} \frac{x}{y} & \text{if } x \le y \\ \frac{y}{x} & \text{if } x > y \end{cases}$$

$$|x - y| = \begin{cases} y - x & \text{if } x \le y \\ x - y & \text{if } x > y \end{cases}$$

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying Lesson

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Connection

from absolute value to normalized ratio

$$\frac{x}{y} = 2^{|\log x - \log y|}$$

from normalized ratio to absolute value

$$|x-y| = \log \frac{2^x}{2^y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying

Question

But why is this the right way to quantify noninterference?

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

Question

- But why is this the right way to quantify noninterference?
- In which sense do the numbers x ⊥k ↓ y and x ⌈f_k ↾ y quantify and generalize the relations x ⊥k ↓ y and x ⌈f_k ↾ y d

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Recall partial equivalence relations

An equivalence relation over a set A is a function

$$A \times A \xrightarrow{R} \{0, 1\}$$

such that

xRy = yRx $xRy \land yRz \le xRz$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic

Probabilistic

Quantifying

Equivalence kernel

An equivalence kernel over a set A is a function

$$A \times A \xrightarrow{R} [0,1]$$

such that

xRy = yRx $xRy \cdot yRz \leq xRz$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Equivalence kernel over ΥA

Recall the set of partial random elements over A

$$\Upsilon A = \left\{ v(X=-) : A \to [0,1] \mid \sum_{x \in A} v(X=x) \le 1 \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying Lesson

Equivalence kernel over ΥA

Recall the set of partial random elements over A

$$\Upsilon A = \left\{ \upsilon(X=-) : A \to [0,1] \mid \sum_{x \in A} \upsilon(X=x) \le 1 \right\}$$

It comes equipped with the canonical equivalence kernel, defined

$$[X \sim Y] = \bigwedge_{a \in A} \frac{v(X = a)}{v(Y = a)}$$

・ロト・西ト・西ト・西・ うろの

Exercise

Show that $[X \sim Y]$ is an equivalence kernel, i.e. that it satisfies the quantified symmetry and transitivity, as defined 3 slides ago.

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Input view is an equivalence kernel

k's prior belief tells how likely is each $\vec{x}_k \in I_k^+$ to be the local view of any $\vec{y} \in I^+$, which is given by a partial random element

$$\upsilon(\vec{x}_k = \vec{x} \upharpoonright_k) : I^+ \quad \rightarrow \quad [0, 1]$$

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic

Lesson

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆
Quantified equivalences

Input view is an equivalence kernel

k's prior belief tells how likely is each $\vec{x}_k \in I_k^+$ to be the local view of any $\vec{y} \in I^+$, which is given by a partial random element

$$\upsilon(\vec{x}_k = \vec{x} \upharpoonright_k) : I^+ \quad \rightarrow \quad [0, 1]$$

Rearranging k's beliefs into partial random elements over I_k^+

$$v(\vec{x} \upharpoonright_k = \vec{x}_k) : I_k^+ \rightarrow [0, 1]$$

we define the input view

$$\vec{x} \lfloor k \rfloor \vec{y} = \bigwedge_{\vec{x}_k \in I_k^+} \left| \frac{\upsilon \left(\vec{x} \upharpoonright_k = \vec{x}_k \right)}{\upsilon \left(\vec{y} \upharpoonright_k = \vec{x}_k \right)} \right|$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying

Quantified equivalences

Remark

Note that for every $\vec{x}_k \in I^+$ and every $\vec{y} \in I^+$ holds

$$\vec{x}_k \lfloor k \rfloor \vec{y} = v \left(\vec{x}_k = \vec{y} \upharpoonright_k \right)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

ICS 355: Introduction Dusko Pavlovic Covert

Possibilistic

Probabilistic

Quantifying

Quotients

Recall that every partial function $A \xrightarrow{f} B$ induces the partial equivalence relation on A

$$x(f)y \iff f(x) = f(y)$$

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Quotients

Recall that every partial function $A \xrightarrow{f} B$ induces the partial equivalence relation on A

$$x(f)y \iff f(x) = f(y)$$

Analogously, every partial stochastic function $A \xrightarrow{t} \Upsilon B$ induces the equivalence kernel

$$x(f)y = \bigwedge_{b\in B} \frac{v(f(x) = b)}{v(f(y) = b)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic

Quantifying

Channel view

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Hence

$$\vec{x} \lceil f_k \rceil \vec{y} = \bigwedge_{z \in O} \left| \frac{\upsilon \left(f_k(\vec{x}) = z \right)}{\upsilon \left(f_k(\vec{y}) = z \right)} \right|$$

... and hence noninterference

A shared probabilistic channel $I^+ \stackrel{f}{\rightarrow} \Upsilon O$ satisfies the *noninterference* requirement at the level *k* if for all states of the world $\vec{x}, \vec{y} \in I^*$ holds

$$\vec{x} \lfloor k \rfloor \vec{y} \leq \vec{x} \lceil f_k \rceil \vec{y}$$

where

$$\vec{x} \lfloor k \rfloor \vec{y} = \bigwedge_{\vec{x}_k \in I_k^+} \frac{\upsilon \left(\vec{x} \restriction_k = \vec{x}_k \right)}{\upsilon \left(\vec{y} \restriction_k = \vec{x}_k \right)}$$
$$\vec{x} \lceil f_k \rceil \vec{y} = \bigwedge_{z \in O} \frac{\upsilon \left(f_k(\vec{x}) = z \right)}{\upsilon \left(f_k(\vec{y}) = z \right)}$$

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic

Probabilistic

Quantifying

... and quantified interference

Definition

The amount of interference that a user at the level *k* of the shared probabilistic channel $I^+ \stackrel{f}{\rightarrow} \Upsilon O$ can extract to distinguish the histories $\vec{x}, \vec{y} \in I^+$ is

$$\begin{split} \iota(\vec{x}, \vec{y}) &= -\log |\frac{\vec{x} \lfloor k \rfloor \vec{y}}{\vec{x} \lceil f_k \rceil \vec{y}}| \\ &= \left| \log \left(\vec{x} \lfloor k \rfloor \vec{y} \right) - \log \left(\vec{x} \lceil f_k \rceil \vec{y} \right) \right| \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic

Quantifying

The partition induced by the kernel of any function $A \xrightarrow{f} B$ or relation $A \xrightarrow{f} \wp B$ are obtained as the image of the composite with its inverse image

 $\begin{array}{ccc} \wp B & \xrightarrow{f^*} & \wp A \\ V & \longmapsto & \bigcup \{ U \subseteq A \mid f(U) \subseteq V \} \end{array}$

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic

Quantifying

The same construction lifts to *stochastic* functions, which are the partial random functions $A \xrightarrow{f} \Upsilon B$ such that for every $b \in B$ holds

$$f_{\bullet}(b) = \sum_{a \in A} f_a(b) < \infty$$

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The same construction lifts to *stochastic* functions, which are the partial random functions $A \xrightarrow{f} \Upsilon B$ such that for every $b \in B$ holds

$$f_{\bullet}(b) = \sum_{a \in A} f_a(b) < \infty$$

Hence

$$\begin{array}{cccc}
A \xrightarrow{f} \Upsilon B \\
\hline B \xrightarrow{\widetilde{f}} & \Upsilon A \\
b & \longmapsto & \frac{1}{f_{\bullet}(b)} \cdot \lambda a. f_{a}(b)
\end{array}$$

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

・ロト・日本・日本・日本・日本・日本

The partition induced by the kernel of any stochastic function $A \xrightarrow{f} \Upsilon B$ are obtained as the image of the composite with its inverse image

 $\begin{array}{ccc} \Upsilon B & \stackrel{f^*}{\longrightarrow} & \Upsilon A \\ \beta & \longmapsto & \sum_{b \in B} \beta(b) \cdot \widetilde{f}_b \end{array}$ → ΥB Α Ϋ́A ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Outline

Covert channels and flows

Possibilistic models

Probabilistic models

Quantifying noninterference

What did we learn?

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What did we learn?

- Interference is exploited through a special family of covert channels.
- Other failures of channel security are realized through other types of covert channels.
- The external interferences¹ on the functioning of a channel manifest themselves though *many possible* outputs on the same input.
 - Hence possibilistic processes.
- Gathering information about the external interferences requires *quantifying* the *probabilities* of the various possible inputs.
 - Possibilistic processes allow quantifying interference.

ICS 355: Introduction Dusko Pavlovic Covert Possibilistic Probabilistic Quantifying Lesson

Statistical disclosure is a probabilistic channel

 Statistical disclosure outputs data from a family of databases randomized as to preserve privacy and anonymity.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Statistical disclosure is a probabilistic channel

- Statistical disclosure outputs data from a family of databases randomized as to preserve privacy and anonymity.
- A randomization method of statistical disclosure can be viewed as a shared probabilistic channel.

Introduction Dusko Pavlovic Covert Possibilistic Probabilistic

ICS 355:

Quantifying

Differential privacy is a bound on interference

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 Security of statistical disclosure is a difficult problem, recently solved in terms of *differential privacy*.

Differential privacy is a bound on interference

- Security of statistical disclosure is a difficult problem, recently solved in terms of *differential privacy*.
- Differential privacy turns out to be a method for limiting the amount of interference, as defined above.

ICS 355: Introduction Dusko Pavlovic

Covert Possibilistic Probabilistic

Quantifying

Lesson

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Huh?

ICS 355: Introduction

Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

But what is differential privacy?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Huh?

ICS 355: Introduction Dusko Pavlovic

Covert

Possibilistic

Probabilistic

Quantifying

Lesson

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

- But what is differential privacy?
- We first need to define privacy, don't we?