Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

Security & Economics — Part 10 Review

Dusko Pavlovic

Spring 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Outline

Idea of the course

- 1 Benefits from security investment
- 2 External view of security investment
- 3 Auctions and sponsored search
- 4 Network externalities and information asymmetry
- 5 Social welfare and social choice

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Outline

Idea of the course

1 - Benefits from security investment

2 - External view of security investment

3 - Auctions and sponsored search

4 - Network externalities and information asymmetry

▲□▶▲□▶▲□▶▲□▶ □ のQ@

5 - Social welfare and social choice

Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions 4-Externalities 5-Voting

Review

Idea of the course

Security = Economy

- A security procedure is effective only if it is cost effective.
- An asset is an asset only if it can be secured.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

・ロト・西ト・西ト・日・ ウヘぐ

Therefore we studied

economics of security:

- incentives for the attackers
- costs for the defenders

security of market:

- not just buying and selling
- but also cheating and stealing

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Tasks

economics of security:

Protect the organizations from the world

security of market:

Protect the world from the organizations

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Methods

economics of security:

pricing and costing security investments

security of market:

security of pricing and costing

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Employment view

economics of security:

- security manager / CIO
- accounting tools for market of security

security of market:

- mechanism designer
- security tools for network economy

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Outline

Idea of the course

- 1 Benefits from security investment
- 2 External view of security investment
- 3 Auctions and sponsored search

4 - Network externalities and information asymmetry

5 - Social welfare and social choice

・ロト・西ト・西ト・日・ つくぐ

The employment view of the course

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- security manager: lectures 2–3
 - accounting tools for the market of security
- mechanism designer: lectures 4–8
 - security tools for network economy

The employment view of the course

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- security manager: lectures 2–3
 - accounting tools for the market of security
- mechanism designer: lectures 4–8
 - security tools for network economy

Accounting for security investments

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

Question

Given the costs and the benefits, how do we calculate the value of security investments?

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- On January 1, 2012, ToySec buys a firewall for £200,000.
- During the year 2012, ToySec accumulates
 - firewall operating costs of £100,000, and
 - security benefits of £400,000

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Basic accounting: Value

```
Net cash flow (NCF)
```

2012-01-01 - £200K 2013-01-01 £400K - £100K = £300K

Value (V) = total cash flow

2012-01-01 - £200K

2013-01-01 - 200K + 2300K = 100K

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

・ロト・日本・日本・日本・日本・日本

Example 1'

- On January 1, 2013, ToySec buys a firewall for £200,000.
- During the year 2013, ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £400,000

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Basic accounting: Future Value

```
Net cash flow (NCF)
```

2013-01-01 - £200K 2014-01-01 £400K - £100K = £300K

Future value (FV) = total expected cash flow

2013-01-01 - £200K

2014-01-01 - 200K + 2300K = 100K

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Example 1 again

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

time	1-1-2012	1-1-2013
security benefit	0	£400,000
security cost	£200,000	£100,000

Example 1 again

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

time	1-1-2012	1-1-2013
security benefit	0	£400,000
security cost	£200,000	£100,000

annual return on investment =

investment profit investment cost

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Example 1 again

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

time	1-1-2012	1-1-2013
security benefit	0	£400,000
security cost	£200,000	£100,000

annual return on investment =

investment profit investment cost

 $= \frac{(400,000 - 100,000)}{200,000}$ = 150%

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Concept 1: Annual return on investment (AROI) Definition

Annual eturn on investment (AROI) is the accounting concept obtained by dividing

- investment profit in a given year, obtained by subtracting
 - the costs C₁ from
 - the benefits B₁

with

investment costs C₀, needed to generate the profit

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Concept 1: Annual return on investment (AROI) Definition

Annual eturn on investment (AROI) is the accounting concept obtained by dividing

- investment profit in a given year, obtained by subtracting
 - the costs C₁ from
 - the benefits B₁

with

investment costs C₀, needed to generate the profit

$$\mathsf{AROI} = \frac{B_1 - C_1}{C_0}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Review Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions 4-Externalities 5-Voting

Concept 1: Annual return on investment (AROI)

Decision rule

- AROI > 100% accept the investment
- AROI < 100% reject the investment
- AROI = 100% offers no grounds for a decision

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Example 1 yet again

time 1-1-2012 1-1-2013 security benefit 0 £400,000 security cost £200,000 £100,000

$$\mathsf{AROI} \quad = \quad \frac{(400,000 - 100,000)}{200,000} \; = \; 150\%$$

 \implies invest!

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

time	1-1-2012	1-1-2013
security benefit	0	£300,000
security cost	£250,000	£100,000

$$\mathsf{AROI} \quad = \quad \frac{(300,000 - 100,000)}{25,000} \; = \; 80\%$$

⇒ do not invest!

time1-1-20121-1-2013security benefit0£300,000security cost£200,000£100,000

$$\mathsf{AROI} \quad = \quad \frac{(300,000 - 100,000)}{200,000} \; = \; 100\%$$

\implies use a different accounting concept?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Accounting of security investments

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

Question

How do we calculate return on multi-period investments?

▲□▶▲□▶▲□▶▲□▶ □ のへの

- On January 1, 2013, ToySec buys an intrusion detection system for £200,000.
- During the year 2013 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £400,000

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- On January 1, 2013, ToySec buys an intrusion detection system for £200,000.
- During the year 2013 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £400,000
- During the year 2014 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £450,000

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

time	1-1-2013	1-1-2014	1-1-2015
security benefit	0	£400,000	£450,000
security cost	£200,000	£100,000	£100,000

シック・ 川 ・ 川 ・ 川 ・ 一日・

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

time 1-1-2013 1-1-20

Example 4

time	1-1-2013	1-1-2014	1-1-2015
security benefit	0	£400,000	£450,000
security cost	£200,000	£100,000	£100,000

simple return on investment $\,=\,$

total investment profit total investment cost

$$= \frac{(0-200) + (400 - 100) + (450 - 100)}{200 + 100 + 100}$$
$$= \frac{450}{400} = 112.5\%$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concept 1': Simple return on investment (SROI) Definition

Simple eturn on investment (SROI) is the accounting concept obtained by dividing

- total investment profit in a given period, obtained by subtracting
 - total costs $\sum_i C_i$ from
 - total benefits $\sum_i B_1$

with

• total costs $\sum_i C_i$, needed to generate the profit

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Concept 1': Simple return on investment (SROI) Definition

Simple eturn on investment (SROI) is the accounting concept obtained by dividing

- total investment profit in a given period, obtained by subtracting
 - total costs $\sum_i C_i$ from
 - total benefits $\sum_i B_1$

with

• total costs $\sum_i C_i$, needed to generate the profit

$$\mathsf{SROI} = \frac{\sum_i B_i - \sum_i C_i}{\sum_i C_i}$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Concept 1': Simple return on investment (SROI)

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

Decision rule

The more the better

・ロト・日本・日本・日本・日本・日本

Accounting of security investments

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲御▶★臣▶★臣▶ 臣 のへで

Question

What is the net present value of multi-period investments?

Example 4 again

- On January 1, 2013, ToySec buys an intrusion detection system for £200,000.
- During the year 2013 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and

▲□▶▲□▶▲□▶▲□▶ □ のQ@

security benefits of £400,000

Review

Example 4 again

- On January 1, 2013, ToySec buys an intrusion detection system for £200,000.
- During the year 2013 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £400,000
- During the year 2014 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £450,000

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities
Example 4 again

- On January 1, 2013, ToySec buys an intrusion detection system for £200,000.
- During the year 2013 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £400,000
- During the year 2014 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £450,000
- ToySec's cost of capital is 15%.

Review Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Concept 2: Net Present Value (NPV)

Definition

The net present value (NPV) of an investment is the sum of

- the annual values of the investment, obtained by subtracting for each year t
 - the costs C_t from
 - the benefits B_t
- discounted by the annual cost of capital k
 - which is the minimal rate of return that every project needs to earn in order for the organization to break even.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Concept 2: Net Present Value (NPV)

Definition

The net present value (NPV) of an investment is the sum of

- the annual values of the investment, obtained by subtracting for each year t
 - the costs C_t from
 - the benefits B_t
- discounted by the annual cost of capital k
 - which is the minimal rate of return that every project needs to earn in order for the organization to break even.

$$\mathsf{NPV} = \sum_{t=0}^{n} \frac{B_t - C_t}{(1+k)^t}$$

where usually $B_0 = 0$, except when there are instant benefits.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

・ロト・日本・日本・日本・日本・日本

Concept 2: Net Present Value (NPV)

Decision rule

- NPV > 0 accept the investment
- NPV < 0 reject the investment
- NPV = 0 offers no grounds for a decision

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

time	1-1-2013	1-1-2014	1-1-2015
security benefit	0	£400,000	£450,000
security cost	£200,000	£100,000	£100,000
cost of capital	15%		

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

time	1-1-2013	1-1-2014	1-1-2015
security benefit	0	£400,000	£450,000
security cost	£200,000	£100,000	£100,000
cost of capital		15%	

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

NPV =
$$-200,000 + \frac{300,000}{1.15} + \frac{350,000}{1.15^2}$$

= $-200,000 + 260,870 + 264,650$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

= 325, 520

 \implies invest!

Review

Dusko Pavlovic

time	1-1-2013	1-1-2014
security benefit	0	£400,000
security cost	£280,000	£100,000
cost of capital	15%	

$$\mathsf{NPV} = -280,000 + \frac{300,000}{1.15}$$

$$=$$
 -280,000 + 260,870

= -19, 130

⇒ do not invest!

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで

Review

Dusko Pavlovic

	-
O	н

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

time	1-1-2013	1-1-2014
security benefit	0	£400,000
security cost	£200,000	£100,000
cost of capital	50%	

$$\begin{array}{rcl} \mathsf{NPV} & = & -200,000 + \frac{300,000}{1.5} \\ & = & -200,000 + 200,000 \end{array}$$

= 0

⇒ take risk aversion into account?

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Accounting of security investments

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

Question

Is it better to invest in security or in something else?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Concept 3: Internal rate of return (IRR)

Definition

The internal rate of return (IRR) of an investment is the discount rate which makes the net present value of a security investment equal to 0.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Concept 3: Internal rate of return (IRR)

Definition

The internal rate of return (IRR) of an investment is the discount rate which makes the net present value of a security investment equal to 0.

$$D = \sum_{t=0}^{n} \frac{B_t - C_t}{(1 + \text{IRR})^t}$$

(

where usually $B_0 = 0$, except when there are instant benefits.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Concept 3: Internal rate of return (IRR)

Decision rule

Suppose that an investment A has a rate of return k_A .

- $IRR > k_A$ invest in security (not in A)
- $IRR < k_A$ do not invest in security (invest in A)
- $IRR = k_A$ consider other preferences

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

・ロト・西ト・西ト・日・ ウヘぐ

- On January 1, 2013, ToySec buys an intrusion detection system for 280,000.
- During the years 2014 and 2015 ToySec is expected to accumulate
 - firewall operating costs of £100,000, and
 - security benefits of £400,000
- ToySec's cost of capital is 15%.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Review

Dusko Pavlovic

_		-	-
_			
_	•		

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

・ロト・日本・日本・日本・日本・日本

time	1-1-2013	1-1-2014	1-1-2015
security benefit	0	£400,000	£400,000
security cost	£280,000	£100,000	£100,000
rate of return of A		15%	

Review

Dusko Pavlovic

time	1-1-2013	1-1-2014	1-1-2015
security benefit	0	£400,000	£400,000
security cost	£280,000	£100,000	£100,000
rate of return of A		15%	

 $0 = -280,000 + \frac{300,000}{1 + IRR} + \frac{300,000}{(1 + IRR)^2}$ $\implies IRR = 70.12\% > 15\% = k_A$

⇒ invest in security!

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Review

Dusko Pavlovic

Idea

time	1-1-2013	1-1-2014
security benefit	0	£400,000
security cost	£280,000	£100,000
cost of capital	15%	

2-External view

1-Investment

3-Auctions

4-Externalities

5-Voting

$$\begin{array}{rcl} 0 & = & -280,000 + \frac{300,000}{1 + {\rm IRR}} \\ \implies & {\rm IRR} \ = \ 7.14\% \ < 15\% \ = \ k_A \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

 \implies invest in A!

Outline

Idea of the course

1 - Benefits from security investment

2 - External view of security investment

Games

Interdependencies of security investments

3 - Auctions and sponsored search

4 - Network externalities and information asymmetry

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

・ロト・西ト・西ト・日・ ウヘぐ

External view of security investments

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Question

How does my neighbor's security influence my own security investment?

Games model interdependencies

Definition

An *n*-player game is an *n*-tuple of utility functions $u = \langle u_i \rangle_{i=1}^n : \prod_{i=1}^n A_i \to \mathbb{R}^n$ where

- $i = 1, 2, \ldots, n$ are the *players*
- A_i is the set of moves available to the player i
- $u_i : A \to \mathbb{R}$ is *i*'s utility

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

・ロト・西ト・西ト・日・ つくぐ

Utility

Terminology

A function $u : A \to \mathbb{R}$ is called *utility* when it is used to express a preference relation.

Dusko Pavlovic Idea 1-Investment 2-External view Games Interdep. 3-Auctions 4-Externalities

Review

5-Voting

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

Utility

Terminology

A function $u : A \to \mathbb{R}$ is called *utility* when it is used to express a preference relation.

Remark

The relation $\succ \subseteq A \times A$ defined

$$a > b \iff u(a) > u(b)$$

is the induced preference relation.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Bimatrix presentation of 2-player games

•
$$A_1 = \{U, D\}$$

•
$$A_2 = \{L, R\}$$

•
$$u = \langle u_1, u_2 \rangle : A_1 \times A_2 \to \mathbb{R}^2$$

$$\begin{array}{c|c} L & R \\ & u_{2}(U,L) & u_{2}(U,R) \\ \\ U & u_{1}(U,L) & u_{1}(U,R) \\ & u_{2}(D,L) & u_{2}(D,R) \\ \\ D & u_{1}(D,L) & u_{1}(D,R) \end{array}$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

Game 1: Studying together

•
$$A_1 = A_2 = M = \{\text{work}, \text{goof}\}$$

•
$$u = \langle u_1, u_2 \rangle : M^2 \to \mathbb{R}^2$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

・ロ・・ 日・・ 日・・ 日・ ・ 日・

Game 1: Studying together

•
$$A_1 = A_2 = M = \{\text{work}, \text{goof}\}$$

$$\blacktriangleright \ u = \langle u_1, u_2 \rangle : M^2 \to \mathbb{R}^2$$

a > b > c > d

・ロト・西ト・田・・田・ ひゃぐ

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

Game 2: Prisoners' Dilemma

•
$$A_1 = A_2 = M = \{\text{deny, confess}\}$$

$$\blacktriangleright \ u = \langle u_1, u_2 \rangle : M^2 \to \mathbb{R}^2$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

・ロト・日本・日本・日本・日本・日本

Notation and terminology

▶ players: *i* = 1, 2, ..., *n*

- moves: $s_i, t_i \in A_i$
- profiles $s = \langle s_1, \dots s_n \rangle \in A = \prod_{i=1}^n A_i$

•
$$\mathbf{s}_{-k} \in \mathbf{A}_{-k} = \prod_{\substack{i=1 \ i \neq k}}^{n} \mathbf{A}_i$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Best response strategy

Definition

A *best response strategy* for a player *k* in a given game $u : A \rightarrow \mathbb{R}^n$ is a relation

$$BR_i \subseteq A_{-k} \times A_k$$

such that

$$a_{-k} BR_k a_k \iff \forall x_k \in A_k. u_k(x_k, a_{-k}) \le u_k(a_k, a_{-k})$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

Best response profile

Definition

A *best response profile* for a given game $u : A \to \mathbb{R}^n$, where $A = \prod_{i=1}^n A_i$ is a relation

$$BR \subseteq A \times A$$

such that

$$s BR t \iff \forall k. s_{-k} BR_k t_k$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

Nash equilibrium

Definition

A (Nash) equilibrium for a given game $u : A \to \mathbb{R}^n$, where $A = \prod_{i=1}^n A_i$ is a profile $s \in A$ such that

s BR s

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Nash's Theorem

Theorem (Nash)

Every game between finitely many players, with finitely many pure moves has a Nash equilibrium, provided that mixed strategies are allowed.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

From payoffs to Nash equilibrium

$$\frac{\prod_{i=1}^{n} A_{i} \xrightarrow{\varrho} \mathbb{R}^{n}}{A_{-i} \xrightarrow{BR_{i}} A_{i}}}{\prod_{i=1}^{n} A_{i} \xrightarrow{\langle BR_{i} \circ \pi_{i} \rangle} \prod_{i=1}^{n} A_{i}} \mathbf{Fix}}$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Security Investment Game

▶ *n* = 2

- $A_1 = A_2 = M = \{\text{invest, don't}\}$
- $u = \langle u_1, u_2 \rangle : M^2 \to \mathbb{R}^2$
- C = cost of the investment
- L = value under threat
- v = vulnerability: probability of successful attack
- w = total transferred vulnerability
 - received from the neighbors

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

Security Investment Game

• if C < v(1 - w)L then

(invest, invest) is dominant equilibrium

- if v(1 w)L < C < vL then
 - there is no dominant equilibrium
 - (invest, invest) and (don't, don't) are Nash equilibria

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▶ if vL < C then</p>

(don't, don't) is dominant equilibrium

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

Games

Interdep.

3-Auctions

4-Externalities

Outline

Idea of the course

1 - Benefits from security investment

2 - External view of security investment

3 - Auctions and sponsored search

Market

Auctions

Sponsored search

4 - Network externalities and informatiomasymmetry a oac

Review

Dusko Pavlovic
Idea
1-Investment
2-External view
3-Auctions
Market
Auctions
Sponsored
4-Externalities
5-Voting

The employment view of the course

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- security manager: lectures 2–3
 - accounting tools for the market of security
- mechanism designer: lectures 4–8
 - security tools for network economy
The employment view of the course

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- security manager: lectures 2–3
 - accounting tools for the market of security
- mechanism designer: lectures 4–8
 - security tools for network economy

Two forms of social choice

- market: aggregate utilities (quantitative)
- voting: aggregate preferences (qualitative)

Review

Dusko Pavlovi	ic
---------------	----

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Two forms of social choice

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

- market: Lectures 4–7
- voting: Lecture 8

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

Market is a system of exchange protocols

- compute the prices
- regulate the exchange

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

Market is a system of exchange protocols

- compute the prices
- regulate the exchange

We focus on computing the prices.

Review Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions Market Auctions Sponsored

4-Externalities

5-Voting

・ロト・西ト・西ト・日・ ウヘぐ

Market as computation

Market is a multi-party computation of the prices

Idea
1-Investment
2-External view
3-Auctions
Market
Auctions
· ·
Sponsored
4-Externalities
4-Externalities 5-Voting

Review

Dusko Pavlovic

・ロト・日本・日本・日本・日本・日本・日本

Auction as market organized by

Review

Dusk	o Pav	lovic
------	-------	-------

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

- a seller: supply auction
- a buyer: procurement auction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Market computation modeling

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

Market security

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Market computation modeling

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

- Market security
 ↑
- Auction security

・ロト・日本・日本・日本・日本・日本

Market computation modeling

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

- Market security
 î
- Games and mechanisms

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Auction protocols: Requirement

Given a set of sellers and a set of buyers with *private utilities*, auction protocols are designed to

Review

Dusko Pavlovic

Idea 1-Investment 2-External view 3-Auctions

Market Auctions

Sponsored 4-Externalities

5-Votina

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- maximize seller's revenue: supply auctions
- minimize buyer's cost: procurement auctions

Auction protocols: Problem

- To maximize revenue, the sellers must keep their utility private
- To minimize cost, the buyers must keep their utility private

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ → 国 → のへで

Auction protocols: Goal

Definition

An auction mechanism is said to be *incentive compatible* if it elicits truthful bidding, i.e. provides the bidders with an incentive to bid their true valuations.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ 三 ● ○○

Multi-item auction

v_1 c_1 c_2 v_2 v_{m} c_n

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで

Single-user procurement (demand) auction

1)

 C_1

 c_2

 c_n

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Review

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

Single-item (supply) auction

Review Dusko Pavlovic

Idea 1-Investment 2-External view 3-Auctions Market Auctions Sponsored 4-Externalities 5-Voting

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Taxonomy of single item auctions

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

	interactive	sealed bid
strategic	descending	first price
truthful	ascending	second price

Equivalence of interactive and sealed bidding

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

- with the ascending auction, the highest bidder pays second highest bidder's valuation
- with the descending auction, the highest bidder pays the first announcement below his own valuation

• payoffs:
$$u = \langle u_i \rangle_{i=1}^n : \mathbb{R}^n \to \mathbb{R}^n$$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

•
$$b = \langle b_i \rangle_{i=1}^n \in \mathbb{R}^n$$
 is the bidding profile

Review

Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions Market

Auctions

Sponsored

4-Externalities

5-Voting

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• moves:
$$A_i = \mathbb{R}$$

▶ payoffs:
$$u = \langle u_i \rangle_{i=1}^n : \mathbb{R}^n \to \mathbb{R}^n$$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

Idea 1-Investment 2-External view 3-Auctions Market Auctions Sponsored 4-Externalities 5-Voting

Review

Dusko Pavlovic

where

- $b = \langle b_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the bidding profile
- $v = \langle v_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the valuation profile

• moves:
$$A_i = \mathbb{R}$$

▶ payoffs:
$$u = \langle u_i \rangle_{i=1}^n : \mathbb{R}^n \to \mathbb{R}^n$$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

where

- $b = \langle b_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the bidding profile
- $v = \langle v_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the valuation profile
- p(b) is the winning price for the bids b

Review

Dusko Pavlovic

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

• moves:
$$A_i = \mathbb{R}$$

▶ payoffs:
$$u = \langle u_i \rangle_{i=1}^n : \mathbb{R}^n \to \mathbb{R}^n$$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

where

- $b = \langle b_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the bidding profile
- $v = \langle v_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the valuation profile
- p(b) is the winning price for the bids b

•
$$\tau_i(b) = \begin{cases} 1 & \text{if } i = \omega(b) \\ 0 & \text{otherwise} \end{cases}$$
 and
 $\omega(b) = \min\{j \le n \mid \forall k. \ b_k \le b_j\}$ is the auction winner

Assumption

Without loss of generality, we assume that the bid vector $b = \langle b_1, b_2, \dots, b_n \rangle$ is arranged in descending order

 $b_1 \geq b_2 \geq b_3 \geq \cdots \geq b_n$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assumption

Without loss of generality, we assume that the bid vector $b = \langle b_1, b_2, \dots, b_n \rangle$ is arranged in descending order

 $b_1 \geq b_2 \geq b_3 \geq \cdots \geq b_n$

Since only one bidder wins, and the priority of equal bidders is resolved lexicographically, nothing is lost if the equal bidders are ignored, so we assume that the bid vector is strictly descending

$$b_1 > b_2 > b_3 > \cdots > b_n$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition

The winning price is

in the first price auction:

$$p_1(b) = b_1$$

in the second price auction:

$$p_2(b) = b_2$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

・ロト・西ト・田・・田・ ひゃぐ

Rational bidding in second price auctions

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proposition

The truthful bidding

 $\overline{b}_i = v_i$

is the dominant strategy for the second price sealed bid auctions.

Rational bidding in first price auctions

Proposition

In a first price sealed bid auction

- with n players,
- with the valuations v_i uniformly distributed in an interval [0, x]

the Nash equilibrium consists of the bids

$$\overline{b}_i = \beta(v_i) = \frac{n-1}{n} \cdot v_i$$

where $\beta : \mathbb{R} \to \mathbb{R}$ denotes the equilibrium strategy used by all players.

Review

Dusko Pavlovic
Idea
1-Investment
2-External view
3-Auctions Market
Auctions
Sponsored
4-Externalities
5-Voting

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

SE

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ●

User

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

SE

User

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

SE

シック・ 川 ・ 川 ・ 川 ・ 一日・

SE

index

index

User

query?

query!

Review

・ロト・西ト・西ト・西ト・日・ション

User SE **Advertiser** Market advertise? Auctions query? index index query!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Sponsored

4-Externalities

5-Voting

2-External view

Market

Auctions

Sponsored

4-Externalities

5-Voting

Position auction

Advertisers bid for positions among the search results.

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

・ロト・日本・日本・日本・日本・日本

Sponsored search auction setting

slots

а

clickthrough

rates

10

Review

advertisers

Х

▲□▶▲□▶▲□▶▲□▶ □ ● ●

revenues per click

3

Sponsored search as a matching problem

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@
Sponsored search as a market

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Review

Dusko Pavlovic

Idea

► *n* buyers, *n* item

Review

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ► *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n − 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$

Review Dusko Pavlovic Idea 1-Investment 2-External view **3-Auctions** Market Auctions Sponsored **4-Externalities** 5-Votina

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- ► *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n − 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$
- item prices $p = (p_i)_n$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- ► *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$
- item prices $p = (p_i)_n$
- matching $\sigma_{vp}: n \to n$ assigns item $\sigma_{vp}(i)$ to i

Review Dusko Pavlovic Idea 1-Investment 2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

・ロト・西ト・田・・田・ ひゃぐ

- *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$
- item prices $p = (p_i)_n$
- matching $\sigma_{vp}: n \rightarrow n$ assigns item $\sigma_{vp}(i)$ to i

• *i*'s utility $u_i \in \mathbb{R}$ is

$$u_i = v_{i\sigma_{vp}(i)} - p_{\sigma_{vp}(i)}$$

Review

Dusko Pavlovic Idea 1-Investment 2-External view **3-Auctions** Market Auctions Sponsored 4-Externalities 5-Votina

◆□▶ ◆□▶ ◆三≯ ◆三≯ ● のへぐ

Goal of the market mechanism

Maximize social welfare, i.e. buyers' total payoff

$$U(v, p) = \sum_{i \in n} u_i$$

= $\sum_{i \in n} v_{i\sigma_{vp}(i)} - p_{\sigma_{vp}(i)}$
= $\sum_{i \in n} v_{i\sigma(i,v)} - P$

where $P = \sum_{i < n} p_i$

Review

Dusko Pavlovic Idea 1-Investment 2-External view **3-Auctions** Market Auctions Sponsored **4-Externalities** 5-Votina

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

Markets respect preference

To maximize utility, $\sigma_{vp}: n \rightarrow n$ maximizes valuations

$$V_{i\sigma(i,v)} \geq V_{ij}$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

n bidders, *n* positions

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$

Review Dusko Pavlovic Idea 1-Investment 2-External view **3-Auctions** Market Auctions Sponsored 4-Externalities 5-Voting

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$

Review
Dusko Pavlovic
Idea
1-Investment
2-External view
3-Auctions
Market
Auctions
Additions
Sponsored
Sponsored 4-Externalities
Sponsored 4-Externalities 5-Voting
Sponsored 4-Externalities 5-Voting
Sponsored 4-Externalities 5-Voting
Sponsored 4-Externalities 5-Voting

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per position $\pi_{ij}(b) = p_i(b) \cdot r_j$ where
 - price per click $p(b) = (p_i(b))_n$

neview
Dusko Pavlovic
Idea
1-Investment
2-External view
3-Auctions
Market
Auctions
Sponsored
4-Externalities
5-Voting

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per position $\pi_{ij}(b) = p_i(b) \cdot r_j$ where
 - price per click $p(b) = (p_i(b))_n$
- matching $\tau : n \times \mathbb{R}^n \to n$ assigns item $\tau(i, b)$ to *i*

Review
Dusko Pavlovic
Idea
1-Investment
2-External view
3-Auctions
Market
Auctions
Sponsored
4-Externalities
5-Voting

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per position $\pi_{ij}(b) = p_i(b) \cdot r_j$ where
 - price per click $p(b) = (p_i(b))_n$
- matching $\tau : n \times \mathbb{R}^n \to n$ assigns item $\tau(i, b)$ to *i*
- *i*'s utility $u_i : \mathbb{R}^n \to \mathbb{R}$ is

$$u_i(b) = v_{i_{\tau(i,b)}} - \pi_{i_{\tau(i,b)}}(b) = (w_i - p_i(b)) \cdot r_{\tau(i,b)}$$

Review Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions Market Auctions Sponsored **4-Externalities** 5-Votina

Goal of the position auction mechanism

Maximize seller's revenue

$$P(b) = \sum_{i < n} \pi_{i\tau(i,b)}(b)$$
$$= \sum_{i < n} p_i(b) \cdot r_{\tau(i,b)}$$

Review

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where

- all p_i grow with b
- bidder *i* bids b_i to maximize $u_i(b)$.

Position auctions respect preference

To maximize $p_i(b)$ with $u_i(b)$ always use

•
$$\tau(i,b) < \tau(j,b) \implies b_i \ge b_j$$
, i.e.

•
$$\tau(i, b) = j$$
 if b_i is *j*-th largest entry in *b*

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assumption

The bidders are ordered by their bids

 $b_1 > b_2 > b_3 > \cdots > b_n$

The positions are ordered by click-through rates

$$r_1 > r_2 > r_3 > \cdots > r_n$$

Review Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions Auctions Sponsored 4-Externalities

5-Voting

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

Generalized Second Price Auction

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$

Review Dusko Pavlovic Idea 1-Investment 2-External view **3-Auctions** Market Auctions Sponsored 4-Externalities 5-Votina

Generalized Second Price Auction

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per click $p_i(b) = b_{i+1}$

Review Dusko Pavlovic Idea 1-Investment 2-External view **3-Auctions** Market Auctions Sponsored **4-Externalities** 5-Votina

Generalized Second Price Auction

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per click $p_i(b) = b_{i+1}$
- *i*'s utility $u_i : \mathbb{R}^n \to \mathbb{R}$ is

$$u_i(b) = (w_i - b_{i+1}) \cdot r_i$$

Review

Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions Market Auctions Sponsored 4-Externalities 5-Voting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Is GSP incentive compatible?

Review

Is GSP incentive compatible?

- with truthful bid: $u_x(7,6,1) = (7-6) \cdot 10 = 10$
- with untruthful bid: $u_x(5, 6, 1) = (7 1) \cdot 4 = 24$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Review

Dusko Pavlovic

Idea: Vickrey, Clarke, Groves

- Each bidder should pay the cost that their bid incurs on social welfare
 - i.e., the sum of the losses that they cause to other bidders

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Review

Dusko Pavlovic

2-External view

4-Externalities

3-Auctions

Auctions Sponsored

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

Idea

- B set of bidders
- S set of sellers (items)
- $v = (v_{ij})_{B \times S}$ bidders' valuations
- V_B^S maximal total valuation

- B set of bidders
- S set of sellers (items)
- $v = (v_{ij})_{B \times S}$ bidders' valuations
- V_B^S maximal total valuation

Remark

- If #B < #S, then add #S − #B bidders with all valuations 0</p>
- If #B > #S, then add #B − #S sellers valued 0 by all.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

・ロ・・中下・・日・・日・・日・

Remember the assumption

The bidders are ordered by their bids

 $b_1 > b_2 > b_3 > \cdots > b_n$

The positions are ordered by click-through rates

$$r_1 \geq r_2 \geq r_3 \geq \cdots \geq r_n$$

Review Dusko Pavlovic Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

・ロト・4日・4日・4日・ 日 のへで

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$

Review Dusko Pavlovic Idea 1-Investment 2-External view **3-Auctions** Market Auctions Sponsored 4-Externalities 5-Votina

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per item $\pi_{ij}(b) = V_{B \setminus i}^{S} V_{B \setminus i}^{S \setminus j}$

Review Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions Market Auctions Sponsored **4-Externalities** 5-Votina

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per item $\pi_{ij}(b) = V_{B\setminus i}^{S} V_{B\setminus i}^{S\setminus j}$
- *i*'s utility $u_i : \mathbb{R}^n \to \mathbb{R}$ is

$$u_i(b) = v_{ii} - \pi_{ii}(b)$$

Review

Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions Market Auctions Sponsored 4-Externalities 5-Voting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Theorem

The VCG auction is incentive compatible: truthful bidding is the unique Nash equilibrium for all players.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

・ロト・日本・日本・日本・日本・日本

Corollary

The VCG auction maximizes social wellfare, i.e. the total utility of bidders.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

Market

Auctions

Sponsored

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Outline

Idea of the course

- 1 Benefits from security investment
- 2 External view of security investment
- 3 Auctions and sponsored search
- 4 Network externalities and information asymmetry

Self-fulfilling expectations

Market of lemons

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

5-Votina

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intrinsic values and externalities

Intrinsic values of goods are expressed through their market prices and their production costs.

Externalities are the values of goods taken by those who are neither producers nor consumers of these goods.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

Lemons

5-Voting

Examples of externalities

Positive:

public health, security, education
freeware, creative commons
social adoption of shared applications

Negative:

- pollution, environmental change
- exploitation of resources (e.g. fishing)
- systemic risk (e.g. in banking)
- congestion
- price increase due to demand

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

Lemons

5-Voting

Self-fulfilling expectations equilibrium

If the value of a good depends on its market adoption, then

- users' belief (expectation) that the good is adopted by a p-part of the market
- causes the good to be *really* adopted by a *p*-part of the market.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

Lemons

5-Voting

Market of lemons

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling Lemons

5-Voting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
Market of lemons

Review

Dusko Pavlovic

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling Lemons

5-Voting

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

valuations:

	good cars	lemons
sellers	X	0
buyers	$\frac{3}{2}X$	0

Idea 1-Investment 2-External view 3-Auctions 4-Externalities self-tutiling Lemons

5-Voting

quality distribution: q-fraction of cars is worth qx 2 on the average

demand:

#buyers > #cars for sale

Review Dusko Pavlovic

・ロト・西ト・田・・田・ ひゃぐ

1. Symmetric information

- Both sellers and buyers can tell which cars are good.
- Each good car is sold for its true value.
- The lemons are unsold or given for free.
- ► Since #buyers > #cars for sale, the market clears.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

Lemons

- 2. Asymmetric information: Naive buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_0 \in \left[0, \frac{3x}{2}\right]$ uniformly distributed
 - offer the average price $p_0 = \frac{3x}{4}$.
 - The sellers
 - withdraw the cars with sellers' values $v \in \left(\frac{3x}{4}, x\right]$ and
 - clear the $\frac{3}{4}$ of the cars with sellers' values $v \in \left[0, \frac{3x}{4}\right]$
 - The buyers
 - get the average value $w_1 = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3x}{2} = \frac{9x}{16}$
 - pay the average price $p_0 = \frac{3x}{4}$

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

5-Votina

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_0 \in \left[0, \frac{3x}{2}\right]$ uniformly distributed
 - offer the average price $p_0 = \frac{3x}{4}$.
 - The sellers
 - withdraw the cars with sellers' values $v \in \left(\frac{3x}{4}, x\right]$ and
 - clear the $\frac{3}{4}$ of the cars with sellers' values $v \in \left[0, \frac{3x}{4}\right]$
 - The buyers
 - know that the values are now $w_1 \in \left[0, \frac{3}{4} \cdot \frac{3x}{2}\right] = \left[0, \frac{9x}{8}\right]$
 - offer the average price $p_1 = \frac{9x}{16}$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

Lemons

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_1 \in \left[0, \frac{9x}{8}\right]$ uniform
 - offer the average price $p_1 = \frac{9x}{16}$.
 - The sellers
 - withdraw the cars with sellers' values $v \in \left(\frac{9x}{16}, x\right]$ and
 - clear the $\frac{9}{16}$ of the cars with sellers' values $v \in \left[0, \frac{9x}{16}\right]$
 - The buyers
 - know that the values are $w_2 \in \left[0, \frac{9}{16} \cdot \frac{3x}{2}\right] = \left[0, \frac{27x}{32}\right]$
 - offer the average price $p_2 = \frac{27\chi}{64}$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_2 \in \left[0, \frac{27x}{32}\right]$ uniformly distributed
 - offer the average price $p_1 = \frac{27x}{64}$.
 - The sellers
 - withdraw the cars with sellers' values $v \in \left(\frac{27x}{64}, x\right]$ and
 - clear the $\frac{27}{64}$ of the cars with values $v \in \left[0, \frac{27x}{64}\right]$
 - The buyers
 - know that the values are $w_3 \in \left[0, \frac{81x}{128}\right]$
 - offer the average price $p_3 = \frac{81\tilde{x}}{256}$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.

► w, p _ 0

The market collapses!

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Self-fulfilling

5-Voting

・ロト・日本・日本・日本・日本・日本

Outline

Idea of the course

- 1 Benefits from security investment
- 2 External view of security investment
- 3 Auctions and sponsored search

4 - Network externalities and information asymmetry

5 - Social welfare and social choice

・ロト・日本・日本・日本・日本・日本

Social choice

Kenneth Arrow's Thesis (1948, 1951)

'In a capitalist democracy there are essentially two methods by which social choices can be made:

- voting, typically used to make "political" decisions, and
- the market mechanism, typically used to make "economic" decisions.'

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Social choice

Kenneth Arrow's Thesis (1948, 1951)

... In the emerging democracies with mixed economic systems, Great Britain, France, and Scandinavia, the same two modes of making social choices prevail, though more scope is given to the method of voting and decisions based directly or indirectly on it and less to the rule of the price mechanism. Elsewhere in the world, and even in smaller social units within the democracies, social decisions are sometimes made by single individuals or small groups.'

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Preference space

Definition

The *preference space* over a set S is the set \mathbb{P} of all preference relations \succ over S

$$\mathbb{P} = \left\{ \succ \subseteq S \times S \mid X \succ Y \succ Z \implies X \succ Z \right\}$$
$$\land (X \succ Y \lor Y \succ X) \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Social welfare function

Definition

For a society consisting of the players i = 1, 2, ..., n, a *social welfare function (swf)* is a mapping

$$\begin{array}{cccc} \langle - \mathcal{J}_{W} & : \ \mathbb{P}^{n} & \to & \mathbb{P} \\ & & \succ & \langle \geq \mathcal{J}_{W} \end{array} \\ \text{where } \succ = \langle \stackrel{1}{\searrow}, \stackrel{2}{\searrow}, \dots, \stackrel{n}{\searrow} \rangle \end{array}$$

Review Dusko Pavlovic Idea 1-Investment 2-External view 3-Auctions 4-Externalities

5-Voting

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Social welfare function

Definition

For a society consisting of the players i = 1, 2, ..., n, a *social welfare function (swf)* is a mapping

$$\begin{array}{rcl} \langle - \mathcal{I}_{w} & : & \mathbb{P}^{n} & \to & \mathbb{P} \\ & & \succ & & & \rangle > \mathcal{I}_{w} \end{array}$$

where $\succ = \langle \stackrel{1}{\succ}, \stackrel{2}{\succ}, \dots, \stackrel{n}{\succ} \rangle$

The relation $\langle \succ \rangle_w$ is the *aggregate preference*, or *social welfare*/ induced by the profile $\succ \in \mathbb{P}^n$.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Social choice function and relation

Definition

A social choice function (scf) is a mapping $l: j_f \mathbb{P}^n \to A$.

A social choice relation (scr) is a mapping $(:)_r \mathbb{P}^n \to \wp A$.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Social choice function and relation

Example 1

A swf $(-)_w$ always induces a scr

$$c \in \langle \rangle \rangle_r \quad \Longleftrightarrow \quad \forall x. \ c \ \rangle \rangle_W \ x$$

It induces a scf if the aggregate preferences have top elements.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Social choice function and relation

Example 2

If the space of alternative choices *A* can be presented in the form

$$A = \prod_{i=1}^{n} A_i$$

where each A_i is controlled by the player *i*, then the scr can be defined to be

$$\langle \succ \rangle_r = \{ \sigma \in A \mid \sigma BR \sigma \}$$

i.e. the social choices are the equilibria of the game.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Definition

A voting vector (or a procedure) for ℓ candidates is an $\ell\text{-tuple}$

$$(c_{\ell-1}, c_{\ell-2}, \ldots, c_0)$$

which is descending, i.e. $c_{i+1} \ge c_i$ for all *i*.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Suppose that there are ℓ candidates in A.
- Let $(c_{\ell-1}, c_{\ell-2}, \ldots, c_0)$ be a voting vector.
- For each i, rename the candidates

$$A = \left\{a_0^{(i)}, a_1^{(i)}, a_2^{(i)}, \dots a_{\ell-1}^{(i)}\right\}$$

so that

$$a_{\ell-1}^{(i)} \stackrel{i}{\succ} a_{\ell-2}^{(i)} \stackrel{i}{\succ} a_{\ell-3}^{(i)} \stackrel{i}{\succ} \cdots \stackrel{i}{\succ} a_{0}^{(i)}$$

and set

$$u_i(a_k^{(i)}) = c_k$$

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

• Then derive $u : A \rightarrow \mathbb{R}$ as

$$u(x) = \sum_{i=1}^n u_i(x)$$

and set

 $a \geq j_w b \iff u(a) > u(b)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Instances

- ► Borda ranking: (ℓ − 1, ℓ − 2,...,0)
- plurality vote: (1,0,...,0)
- antiplurality vote: (1, 1, ..., 1, 0)

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

Condorcet requirement

Definition

A swf $\langle - \rangle_w : \mathbb{P}^n \to \mathbb{P}$ satisfies the *Condorcet requirement* if

$$a \geq \int_{W} b \implies \#a \geq b > \#b \geq a$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Borda count violates Condorcet requirement

Example

Consider the preferences

voters	preference
30	a > b > c
1	a > c > b
29	b > a > c
10	b > c > a
10	c > a > b
1	c > b > a

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Borda count violates Condorcet requirement

Example

Consider the preferences

voters	preference
30	a > b > c
1	a > c > b
29	b > a > c
10	b > c > a
10	c > a > b
1	c > b > a

Then $b(109) \ i > j_w a(101) \ i > j_w c(33)$ but a(41) > b(40) and a(60) > c(21).

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Condorcet ranking

Definition

Given a preference profile $\succ \in \mathbb{P}^n$, the *Condorcet ranking* \gg is defined by setting

$$a \gg b \iff #a > b > #b > a$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

Condorcet ranking allows cycles

Example

Consider the preferences

voters	preference
23	a > b > c
2	b > a > c
17	b > c > a
10	c > a > b
8	c > b > a

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities

5-Voting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Condorcet ranking allows cycles

Example

Consider the preferences

voters	preference
23	a > b > c
2	b > a > c
17	b > c > a
10	c > a > b
8	c > b > a

Then

 $a(33) \gg b(27)$ $b(42) \gg c(18)$ $c(35) \gg a(25)$

Review

4-Externalities

5-Voting

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Condorcet ranking allows cycles

Corollary

Condorcet ranking may not be transitive.

Proof

If Condorcet ranking were transitive, then $a \gg b$ and $b \gg c$ and $c \gg a$ would imply $a \gg a$.

But by the definition of Condorcet ranking, this would mean that $#a{>}a > #a{>}a$, which is impossible.

Review

Dusko Pavlovic

Idea

1-Investment

2-External view

3-Auctions

4-Externalities