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Where are we?

Done: Internal view of security investment

Basic tools for

◮ evaluating security risks

◮ comparing costs and benefits benefits

◮ deciding about the preferred solutions
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Where are we?

To do: External view of security interdependencies

How does my neighbor’s security

influence my own security investment?
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Recall: Preference

Definition

A preference over a set A is a binary relation

≻ ⊆ A × A

which is

◮ transitive: a ≻ b ∧ b ≻ c =⇒ a ≻ c

◮ total: a ≻ b ∨ b ≻ a ∨ a = b
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Recall: Utility

Terminology

A function u : A→ R is called utility when it is used to

express a preference relation.
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Recall: Utility

Terminology

A function u : A→ R is called utility when it is used to

express a preference relation.

Remark

The relation ≻⊆ A × A defined

a ≻ b ⇐⇒ u(a) > u(b)

is always a preference relation, for any given u.
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Recall: Utility

Proposition

Every preference relation can be expressed by many

different utility functions.
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Utility and value

The word value, it is to be observed, has two different

meanings, and sometimes expresses the utility of some

particular object, and sometimes the power of purchasing other

goods which the possession of that object conveys. The one

may be called ’value in use ;’ the other, ’value in exchange.’

The things which have the greatest value in use have

frequently little or no value in exchange; and on the contrary,

those which have the greatest value in exchange have

frequently little or no value in use. Nothing is more useful than

water: but it will purchase scarce any thing; scarce any thing

can be had in exchange for it. A diamond, on the contrary, has

scarce any value in use; but a very great quantity of other

goods may frequently be had in exchange for it.

Adam Smith
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A valuable property must be

◮ tranferrable
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Utility and value

A valuable property must be

◮ tranferrable

◮ scarce

◮ effectively secured
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Utility and value require security

Economics ⊆ Security

◮ An asset is an asset only if it can be secured.

Security ⊆ Economics

◮ A protection is effective only if it is cost effective.



3. Interdependent

Dusko Pavlovic

Introduction

Where are we?

Decisions, interactions

Games

Interdependencies

Utility paradoxes

"Problems of decision under uncertainty"

◮ St. Petersburg paradox

◮ Ellsberg paradox

◮ Alais paradox
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Utility paradoxes

"Problems of decision under uncertainty"

◮ St. Petersburg paradox

◮ Ellsberg paradox

◮ Alais paradox

Homework

Read the Wikipedia articles about these paradoxes. They

are fun! Everyone has a different solution. See how you

would resolve them!
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Reconciling utilities: Games

Definition

A (normal form, von Neumann-Morgenstern) game is an

n-tuple of utility functions u = 〈ui〉
n
i=1

: A→ Rn where

◮ i = 1, 2, . . . , n are the players

◮ Ai is the set of moves available to the player i

◮ A =
∏n

i=1 Ai

◮ ui : A→ R is i ’s utility
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From decisions to interactions

◮ Decision theory studies individual preferences:

◮ an individual’s decides to choose a ∈ A.
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From decisions to interactions

◮ Decision theory studies individual preferences:

◮ an individual’s decides to choose a ∈ A.

◮ Game theory studies the interactions between the

individuals with different preferences:

◮ players k = 1, 2, . . . , n

◮ utilities uk :
∏n

i=1 Ai → R

◮ k controls her own moves ak ∈ Ak

◮ k does not control j ’s choices aj ∈ Aj for j , k
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Bimatrix presentation of 2-player games

◮ n = 2

◮ A1 = {U ,D}

◮ A2 = {L,R}

◮ u = 〈u1, u2〉 : A1 × A2 → R
2

L R

u2(U , L) u2(U ,R)

U u1(U , L) u1(U ,R)

u2(D, L) u2(D,R)

D u1(D, L) u1(D,R)
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Game 1: Prisoners’ Dilemma

◮ n = 2

◮ A1 = A2 = M = {deny, confess}

◮ u = 〈u1, u2〉 : M2 → R2

deny confess

−1 0

deny −1 −11

−11 −10

confess 0 −10
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Game 1: Prisoners’ Dilemma

◮ n = 2

◮ A1 = A2 = M = {deny, confess}

◮ u = 〈u1, u2〉 : M2 → R2

deny confess

b a

deny b d

d c

confess a c

a ≻ b ≻ c ≻ d
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Game 2: Arms Race

◮ n = 2

◮ A1 = A2 = M = {disarm, arm}

◮ u = 〈u1, u2〉 : M2 → R2

disarm arm

2 3

disarm 2 −1

−1 1

arm 3 1
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Game 2: Arms Race

◮ n = 2

◮ A1 = A2 = M = {disarm, arm}

◮ u = 〈u1, u2〉 : M2 → R2

disarm arm

b a

disarm b d

d c

arm a c

a ≻ b ≻ c ≻ d
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Game 2’: Arms Race

◮ n = 2

◮ A1 = A2 = M = {disarm, arm}

◮ u = 〈u1, u2〉 : M2 → R2

disarm arm

3 2

disarm 3 −1

−1 1

arm 2 1
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Game 3: Stag Hunt

◮ n = 2

◮ A1 = A2 = M = {stag, hare}

◮ u = 〈u1, u2〉 : M2 → R2

stag hare

2 1

stag 2 0

0 1

hare 1 1
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Game 3: Stag Hunt

◮ n = 2

◮ A1 = A2 = M = {stag, hare}

◮ u = 〈u1, u2〉 : M2 → R2

stag hare

a b

stag a c

c b

hare b b

a ≻ b ≻ c
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Game 4: Chicken in a car

◮ n = 2

◮ A1 = A2 = M = {stop, go}

◮ u = 〈u1, u2〉 : M2 → R2

stop go

0 1

stop 0 −1

−1 −10

go 1 −10
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Game 4: Chicken in a car

◮ n = 2

◮ A1 = A2 = M = {stop, go}

◮ u = 〈u1, u2〉 : M2 → R2

stop go

b a

stop b c

c d

go a d

a ≻ b ≻ c ≻ d
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Game 5: Matching Pennies

◮ n = 2

◮ A1 = A2 = M = {H,T}

◮ u = 〈u1, u2〉 : M2 → R2

H T

−1 1

H 1 −1

1 −1

T −1 1
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Game 5: Matching Pennies

◮ n = 2

◮ A1 = A2 = M = {H,T}

◮ u = 〈u1, u2〉 : M2 → R2

H T

b a

H a b

a b

T b a

a ≻ b
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Game 6: Penalty kick

◮ n = 2

◮ A1 = A2 = M = {L,R}

◮ u = 〈u1, u2〉 : M2 → R2

L R

−.58 −.95

L .58 .95

−.93 −.7

R .93 .7
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Game 6: Penalty kick

◮ n = 2

◮ A1 = A2 = M = {L,R}

◮ u = 〈u1, u2〉 : M2 → R2

L R

−d −a

H d a

−b −c

T b c

a ≻ b ≻ c ≻ d
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Notation and terminology

◮ players: i = 1, 2, . . . , n

◮ moves: si , ti ∈ Ai

◮ profiles s = 〈s1, . . . sn〉 ∈ A =
∏n

i=1 Ai

◮ s−k ∈ A−k =
∏n

i=1
i,k

Ai
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Best response strategy

Definition

A best response strategy for a player k in a given game

u : A→ Rn is a relation

BRi ⊆ A−k × Ak

such that

a−k BRk ak ⇐⇒ ∀xk ∈ Ak . uk(xk , a−k ) ≤ uk (ak , a−k )
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Dominant move

Definition

A dominant move for a player k in a given game

u : A→ Rn is a move dk ∈ Ak which is a best response to

all opponent moves. The set of dominant moves for k is

thus

Dmnk = {dk | ∀x−k .x−k BRkdk }

i.e.

dk ∈ Dmnk ⇐⇒ ∀x ∈ A. uk(xk , x−k ) ≤ uk (dk , x−k )
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Dominant move equilibrium

Definition

A dominant move equilibrium in a given game u : A→ Rn

is a profile d ∈ A which consists of dominant moves. The

set of dominant move equilibria is thus

Dmn =
n∏

i=1

Dmni

i.e.

d ∈ Dmn ⇐⇒ ∀i ≤ n∀x ∈ A. ui(x) ≤ ui(di , x−i)
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Dominant move equilibrium

Exercise

Explore which of the 7 games have dominant move

equilibria.
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Best response profile

Definition

A best response profile for a given game u : A→ Rn,

where A =
∏n

i=1 Ai is a relation

BR ⊆ A × A

such that

s BR t ⇐⇒ ∀k . s−k BRk tk
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Nash equilibrium

Definition

A (Nash) equilibrium for a given game u : A→ Rn, where

A =
∏n

i=1 Ai is a profile s ∈ A such that

s BR s
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Nash equilibrium

Exercise

Explore which of the 7 games have Nash equilibria.
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Nash equilibrium

Proposition

Every dominant equlibrium is a Nash equilibrium.
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Mixed moves

Definition

A mixed move α for a player k is a convex combination of

moves from Ak , i.e.

α =
m∑

j=1

αj · a
j

k

where
∑n

j=1 αj = 1 and a1
k
, a2

k
, . . .am

k
∈ Ak .
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Mixed moves

Definition

A mixed move α for a player k is a convex combination of

moves from Ak , i.e.

α =
m∑

j=1

αj · a
j

k

where
∑n

j=1 αj = 1 and a1
k
, a2

k
, . . .am

k
∈ Ak .

The set of mixed moves over Ak is thus

∆Ak �

∞∐

m=1


α ∈ Rm |

∑

j

α
j = 1


× Am

k
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Mixed moves

Definition

A mixed move α for a player k is a convex combination of

moves from Ak , i.e.

α =
m∑

j=1

αj · a
j

k

where
∑n

j=1 αj = 1 and a1
k
, a2

k
, . . .am

k
∈ Ak .

The set of mixed moves over Ak is thus

∆Ak �

∞∐

m=1


α ∈ Rm |

∑

j

α
j = 1


× Am

k

The unmixed moves from Ak are called pure.
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Mixed moves

Remark 1

A mixed move α for a player k can equivalently be viewed as a

finitely supported probability distribution α : Ak → [0, 1], i.e.

satisfying

∑

x∈Ak

α(x) = 1 #{x ∈ Ak | α(x) , 0} < ∞
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Mixed moves

Remark 2

Utility functions and the notion of (normal form) game

extend to mixed moves:

u :
∏

n
i=1Ai → R

n

û :
∏

n
i=1∆Ai → R

n

by setting

ûi(. . . αk . . .) =
m∑

j=1

α
j

k
· ui

(
a

j

k

)
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Nash’s Theorem

Theorem (Nash)

The Nash equilibrium in mixed moves exists for every

game between finitely many players, with finitely many

pure moves.
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Hawk and Dove with parameters

◮ n = 2

◮ A1 = A2 = M = {retreat, attack}

◮ u = 〈u1, u2〉 : M2 → R2

◮ w = winnings to be shared

◮ c = cost of battle

retreat attack
w
2

w

retreat w
2 0

0 w
2 − c

attack w w
2
− c



3. Interdependent

Dusko Pavlovic

Introduction

Games

Examples of games

Strategies

Dominance

Nash equilibrium

Mixing

Games with parameters

Interdependencies

Hawk and Dove with parameters

◮ if 0 < w and c < w
2

, then

◮ the dominant equilibrium is 〈attack , attack〉

◮ if 0 < w and c > w
2

, then

◮ there is no dominant equilibrium

◮ 〈attack , retreat〉 and 〈retreat , attack〉 are Nash

equilibria



3. Interdependent

Dusko Pavlovic

Introduction

Games

Examples of games

Strategies

Dominance

Nash equilibrium

Mixing

Games with parameters

Interdependencies

Hawk and Dove with parameters

◮ if 0 > w and c > w
2

, then

◮ the dominant equilibrium is 〈retreat , retreat〉

◮ if 0 > w and c < w
2

, then

◮ there is no dominant equilibrium

◮ 〈attack , attack〉 and 〈retreat , retreat〉 are Nash

equilibria
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Security Investment Game

◮ n = 2

◮ A1 = A2 = M = {invest, don’t}

◮ u = 〈u1, u2〉 : M2 → R2

◮ C = cost of the investment

◮ L = value under threat

◮ v = vulnerability: probability of successful attack

◮ w = total transferred vulnerability

◮ received from the neighbors
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invest don’t

−C −vL

invest −C −C − wL

−C − wL −vL − (1 − v)wL

don’t −vL −vL − (1 − v)wL
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Security Investment Game

◮ if C < v(1 − w)L then

◮ 〈invest, invest〉 is dominant equilibrium

◮ if v(1 − w)L < C < vL then

◮ there is no dominant equilibrium

◮ 〈invest, invest〉 and 〈don’t, don’t〉 are Nash equilibria

◮ if vL < C then

◮ 〈don’t, don’t〉 is dominant equilibrium
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