II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Security & Economics — Part 4 Basic ideas about market

Dusko Pavlovic

Spring 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Outline

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Introduction

Auctions

Matching demand and supply

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Introduction

Where are we?

Market security

Auctions

Matching demand and supply

II-4. Market

Dusko Pavlovic

Introduction

Where are we?

Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

シック・ 川 ・ 川 ・ 川 ・ 一日・

Two parts

II-4. Market

Dusko Pavlovic

Introduction

Where are we?

Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

- 1. pricing/costing of security investment
- 2. security of pricing/costing

Two parts

II-4. Market

Dusko Pavlovic

Introduction

- Where are we?
- Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- 1. market view of security
- 2. security view of market

Two parts

The employment view

security manager:

- accounting tools for the market of security
- mechanism designer:
 - security tools for network economy

Dusko Pavlovic

Introduction

Where are we?

Market security

What is security?

What is market?

Antisocial choice

Auctions

Local requirements imposed on global processes

- access/availability of resources
- authenticity/confidentiality of information flows
- public and private benefit in social processes
 - voting
 - markets

II-4. Market

Dusko Pavlovic

Introduction

Where are we?

Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

・ロト・日本・日本・日本・日本・日本

Protocols

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security What is security? What is market? Antisocial choice

Social \subseteq Computational \subseteq Social

- Social processes are computations
 - market computes prices
 - voting computes joint preferences

- Network computations are social processes
 - wisdom of the crowds
 - information cascades

II-4. Market

Dusko Pavlovic

Introduction

Where are we?

Market security

What is security?

What is market?

Antisocial choice

Auctions

Ages of computation

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security

Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

ages	ancient	middle	modern
platform	computer	operating system	<u>network</u>
paradigms	Quicksort, compilers	MS Word, Oracle	WWW, botnets
tasks	correctness, liveness, termination safety		security
tools	programming languages	specification languages	scripting languages

Security requirements are crucial

Individual choice

- Individual choices are guided by individual preferences, i.e. private utility functions
- Private benefit is achieved by maximizing the private utility.

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Dusko Pavlovic

Introduction

Where are we? Market security What is security?

What is market?

Antisocial choice

Auctions

Matching

- Public benefit is achieved by maximizing the total utility, i.e. the sum of individual utilities.
- The goal of social choice protocols is to maximize public benefit.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Problem of social choice

- Individual preferences diverge; they are often inconsistent
- Reconciling them leads to strategic behaviors
- Public benefit get overwhelmed by private benefits: oligopoly, dictatorship

II-4. Market

Dusko Pavlovic

Introduction

Market security What is security? What is market?

Antisocial choice

Auctions

Matching

・ロト・西ト・西ト・日・ ウヘぐ

Protocols for social choice

Two forms of social choice

- market: aggregate utilities (quantitative)
- voting: aggregate preferences (qualitative)

II-4. Market

Dusko Pavlovic

Introduction

Market security What is security? What is market? Antisocial choice

Auctions

Matching

・ロト・西ト・西ト・日・ ウヘぐ

Protocols for social choice

Two forms of social choice

market: Lectures 5–7

voting: Lecture 8

II-4. Market

Dusko Pavlovic

Introduction

Where are we?

Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Market protocols

Market is a multi-party computation of the prices

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security What is security? What is market? Antisocial choice

Auctions

Matching

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Market and crime

Market and crime are

- security problems
 - multiparty computation, protocols, social processes
- economic processes
 - concerning goods, wealth and public/private property

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security What is security? What is market?

Antisocial choice

Auctions

Market computation modeling

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

Market security

・ロト・西ト・西ト・西ト・日・ション

Market computation modeling

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security

What is security?

What is market?

Antisocial choice

Auctions

Matching

- Auction security

・ロト・日本・日本・日本・日本・日本

Market computation modeling

II-4. Market

Dusko Pavlovic

Introduction

Where are we? Market security What is security?

What is market?

Antisocial choice

Auctions

Matching

- Market security
 ↑
- Games and mechanisms

・ロマ・山マ・山マ・山マ・山マ

Outline

Introduction

Auctions

Market protocols

Modeling auctions

Rational bidding strategies

Summary

Matching demand and supply

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Setup

- every asset is owned by a single agent
- every agent has a utility for all assets

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Setup

- every asset is owned by a single agent
- every agent has a utility for all assets

Goal

Maximize everyone's utility by:

- general: redistributing the assets
- simple: exchanging the assets pairwise
- complex: sell and buy

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies

Summary

Exchange and surplus

utility	wheat	wine
Alice	2	1
Bob	3	7

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

If Alice owns wine and Bob owns wheat

then their utilities are 1 and 3.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Exchange and surplus

utility	wheat	wine
Alice	2	1
Bob	3	7

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

If Alice owns wheat and Bob owns wine

then they have utilities 2 and 7.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Exchange and surplus

<i>u</i> tility	wheat	wine
Alice	2	1
Bob	3	7

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

If Alice owns wheat and Bob owns wine

then they have utilities 2 and 7.

Their **surpluses** of exchange are 1 and 4.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Market: Functional requirement

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Bidding strategies

Summary

Matching

optimal matching of the users and the goods

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Market: Security requirement

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies

Summary

Matching

 beneficial (stable, productive, fair) distribution of the surplus

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Market: Functional problem

Computational obstacle

Optimal matching can be doubly exponential:

- every pair of goods may need to be compared for
- every pair of agents

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model

Bidding strategies

Summary

Matching

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Market: Functional solution

Idea

Mediate the comparisons through a *universal value*, by exchanging

- ▶ offered goods → universal value
- universal value \rightarrow needed goods

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Market: Functional solution

Idea

Mediate the comparisons through a *universal value*, by exchanging

- ▶ offered goods → universal value
- universal value \rightarrow needed goods

This requires a protocol.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

(if not from a science)

About 6000 years ago, Kain's son Bob built a secure vault

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies

Summary

Matching

・ロト・日本・日本・日本・日本・日本

(if not from a science)

and stored his goods in it

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(if not from a science)

and stored his goods in it.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

(if not from a science)

and stored his goods in it. When Alice wanted to go for a vacation

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies

Summary

(if not from a science)

and stored his goods in it. When Alice wanted to go for a vacation, she stored her goods there too.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary
(if not from a science)

As a receipt for her deposit in Bob's vault, Alice got a *secure token in a clay envelope*.

Figure : Louvre, Paris

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies

Summary

(if not from a science)

As a receipt for her deposit in Bob's vault, Alice got a *secure token in a clay envelope*.

Figure : Louvre, Paris

• To take the sheep, Alice must give the token.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model

Bidding strategies

Summary

(if not from a science)

As a receipt for her deposit in Bob's vault, Alice got a *secure token in a clay envelope*.

Figure : Louvre, Paris

- To take the sheep, Alice must give the token.
- To give the sheep, Bob must take the token.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model

Bidding strategies

Summary

Matching

4.3.5

ъ

(if not from a science)

As a receipt for her deposit in Bob's vault, Alice got a *secure token in a clay envelope*.

Figure : Louvre, Paris

- To take the sheep, Alice must give the token.
- To give the sheep, Bob must take the token.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model

Bidding strategies

Summary

Matching

4.3.5

ъ

(if not from a science)

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

ouer

Bidding strategies

Summary

Matching

This protocol goes back to Uruk (Irak), 4000 B.C.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

(if not from a science)

- This protocol goes back to Uruk (Irak), 4000 B.C.
- Money developed from security tokens.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Bidding strategies

Summary

Matching

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

(if not from a science)

- This protocol goes back to Uruk (Irak), 4000 B.C.
- Money developed from security tokens.
- Numbers developed from security annotations.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(if not from a science)

- This protocol goes back to Uruk (Irak), 4000 B.C.
- Money developed from security tokens.
- Numbers developed from security annotations.
- Cuneiform alphabet developed later.
- Science developed still later.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Market protocol is based on money

Idea: trade = sell + buy

Exchange goods through money:

- sell: offered goods → money
- buy: money → needed goods

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Bidding strategies

Summary

Matching

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remaining market problem

Find the best

- buyers
- sellers

in order to

- function: maximize the surplus
- security: keep most of the surplus

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Complete information \Rightarrow Bargaining

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

If the buyers and the sellers know each other's valuations, they only need to bargain how to split the surplus.

Asymmetric information \Rightarrow No market

- If the seller knows highest buyer's utility, he asks a price just below
 - and keeps all of the surplus
- If the buyer knows lowest seller's utility, he just offers a price just above

▲□▶▲□▶▲□▶▲□▶ □ のQ@

and keeps all of the surplus

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Incomplete information \Rightarrow Auctions

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

If the buyers and the sellers do not know each other's valuations, they use auction protocols to *elicit price offers*.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Auction protocols: Requirement

Given a set of sellers and a set of buyers with *private utilities*, auction protocols are designed to

- maximize seller's revenue: supply auctions
- minimize buyer's cost: procurement auctions

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies

Summary Matching

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Auction protocols: Problem

- To maximize revenue, the sellers must keep their utility private
- To minimize cost, the buyers must keep their utility private

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Elicit truthful bidding:

 the participants should bid as close as possible to their true valuations II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model

Bidding strategies Summary

Matching

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Definition

An auction mechanism is said to be *incentive compatible* if it elicits truthful bidding, i.e. provides the bidders with an incentive to bid their true valuations.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Bidding strategies

Summary

Matching

How is this goal fulfilled?

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

- How is this goal fulfilled?
- How do auctions work?
- What types of auctions are there?

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Bidding strategies

Summary

Matching

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Multi-item auction

v_1 c_1 c_2 v_2 v_{m} c_n

II-4. Market

Dusko Pavlovic

Introduction

Auctions Market protocols Model

Bidding strategies

Summary

Matching

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQで

Single-user procurement (demand) auction

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Single-item (supply) auction

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Matching

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Taxonomy of single item auctions

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

	interactive	sealed bid
strategic	descending	first price
truthful	ascending	second price

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Equivalence of interactive and sealed bidding

with the ascending auction, the highest bidder pays second highest bidder's valuation

▲□▶▲□▶▲□▶▲□▶ □ のQ@

with the descending auction, the highest bidder pays the first announcement below his own valuation

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Explaining away interactive bidding

- Interactions only determine how much of the information about each other's bids to the bidders get
 - cf the difference between English and Japanese auction
- With sealed bid auction, they get a minimum: each bidder just learns whether his bid is the highest

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

Explaining away interactive bidding

- Interactions only determine how much of the information about each other's bids to the bidders get
 - cf the difference between English and Japanese auction
- With sealed bid auction, they get a minimum: each bidder just learns whether his bid is the highest
- We abstract away the interaction and study sealed bid auctions.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols Model Bidding strategies Summary

- ▶ players: *i* = 1, 2, ..., *n*
- moves: $A_i = \mathbb{R}$

• payoffs:
$$u = \langle u_i \rangle_{i=1}^n : A \to \mathbb{R}^n$$

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

▶ payoffs:
$$u = \langle u_i \rangle_{i=1}^n : A \to \mathbb{R}^n$$
, $A = \prod_i A_i = \mathbb{R}^n$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

where

•
$$b = \langle b_i \rangle_{i=1}^n \in A$$
 is the bidding profile

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

• moves:
$$A_i = \mathbb{R}$$

▶ payoffs:
$$u = \langle u_i \rangle_{i=1}^n : A \to \mathbb{R}^n$$
, $A = \prod_i A_i = \mathbb{R}^n$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

where

•
$$b = \langle b_i \rangle_{i=1}^n \in A$$
 is the bidding profile

• $v = \langle v_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the valuation profile

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

• moves:
$$A_i = \mathbb{R}$$

▶ payoffs:
$$u = \langle u_i \rangle_{i=1}^n : A \to \mathbb{R}^n$$
, $A = \prod_i A_i = \mathbb{R}^n$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

where

•
$$b = \langle b_i \rangle_{i=1}^n \in A$$
 is the bidding profile

- $v = \langle v_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the valuation profile
- p(b) is the winning price for the bids b

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

• moves:
$$A_i = \mathbb{R}$$

▶ payoffs:
$$u = \langle u_i \rangle_{i=1}^n : A \to \mathbb{R}^n$$
, $A = \prod_i A_i = \mathbb{R}^n$

$$u_i(b) = \tau_i(b) \cdot (v_i - p(b))$$

where

•
$$b = \langle b_i \rangle_{i=1}^n \in A$$
 is the bidding profile

- $v = \langle v_i \rangle_{i=1}^n \in \mathbb{R}^n$ is the valuation profile
- p(b) is the winning price for the bids b

$$\tau_i(b) = \begin{cases} 1 & \text{if } i = \omega(b) \\ 0 & \text{otherwise} \end{cases} \text{ and } \\ \omega(b) = \min\{j \le n \mid \forall k. \ b_k \le b_j\} \text{ is the auction winner } \end{cases}$$

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Explanations

- Only *i* knows v_i.
- In sealed bid auctions, only *i* and the auctioneer know b_i.
- The auctioneer calculates
 - the winning price p(b)
 - the auction winner $\omega(b)$

and tells the price to the winner.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Remarks

- The auction implementation problems
 - winner's commitment to pay
 - auctioneer's integrity in calculations

are beyond the scope of this analysis.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Remarks

- The auction implementation problems
 - winner's commitment to pay
 - auctioneer's integrity in calculations

are beyond the scope of this analysis.

- The bidders do not know each other's utility.
 - The notion of Nash equilibrium is therefore dubious.
 - It does apply because of special circumstances.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Assumption

Without loss of generality, we assume that the bid vector $b = \langle b_1, b_2, \dots, b_n \rangle$ is arranged in descending order

 $b_1 \ge b_2 \ge b_3 \ge \cdots \ge b_n$

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Assumption

Without loss of generality, we assume that the bid vector $b = \langle b_1, b_2, \dots, b_n \rangle$ is arranged in descending order

 $b_1 \geq b_2 \geq b_3 \geq \cdots \geq b_n$

Since only one bidder wins, and the priority of equal bidders is resolved lexicographically, nothing is lost if the equal bidders are ignored, so we assume that the bid vector is strictly descending

$$b_1 > b_2 > b_3 > \cdots > b_n$$

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies Summary
Modeling auctions as games

Definition

The winning price is

in the first price auction:

$$p_1(b) = b_1$$

in the second price auction:

$$p_2(b) = b_2$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Rational bidding in second price auctions

Proposition

The truthful bidding

$$\overline{b}_i = v_i$$

is the dominant strategy for the second price sealed bid auctions.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Rational bidding in second price auctions

Proof

Bidders' payoffs are

$$u_i(\overline{b}) = \begin{cases} v_1 - v_2 & \text{if } i = 1 \\ 0 & \text{otherwise} \end{cases}$$

The claim is that for all $b \in \mathbb{R}^n$ holds

$$u_i(\overline{b}) \geq u_i(b)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Rational bidding in second price auctions

Proof.

- If $b_i > \overline{b}_i = v_i$ then
 - if i = 1, then the outcome is unchanged
 - ▶ if *i* > 1, then
 - either $b_i > b_1 \ge \overline{b}_i = v_i$, and the bidder *i* wins the auction with the utility $u_i(b) = v_i b_1 \le 0$
 - or $b_i \leq b_1$, and the outcome remains unchanged.
- If $b_i < \overline{b}_i = v_i$ then
 - ▶ if *i* > 1, then the outcome is unchanged
 - if i = 1, then
 - either $b_1 < b_2 \le \overline{b}_1 = v_1$, and the bidder 2 wins the auction, so that 1's utility is at most 0,
 - or $b_i \ge b_2$, and the outcome remains unchanged.

・ロト・4回ト・4回ト・4回ト 回 PAC

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Proposition

In a first price sealed bid auction

- with n players,
- with the valuations v_i uniformly distributed in an interval [0, x]

the Nash equilibrium consists of the bids

$$\overline{b}_i = \beta(v_i) = \frac{n-1}{n} \cdot v_i$$

where $\beta : \mathbb{R} \to \mathbb{R}$ denotes the equilibrium strategy used by all players.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Proof

- Without loss of generality, divide all valuations by x.
 - *v_i* are uniformly distributed in [0, 1].

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Proof

- Without loss of generality, divide all valuations by x.
 - *v_i* are uniformly distributed in [0, 1].
- In the mean, the utilities u_i can be approximated

$$\tau_i(b) \cdot (v_i - b_1) \approx v_i^{n-1} \cdot (v_i - \beta(v_i))$$

- β(v_i) should give *i* the probability v_i to win against any other bidder
- ► hence the probability v_i^{n-1} that the player *i* will win against n-1 other bidders

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Proof

Suppose the bidders are in equilibrium, i.e. all play $\overline{b}_i = \beta(v_i)$.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

Proof

- Suppose the bidders are in equilibrium, i.e. all play $\overline{b}_i = \beta(v_i)$.
- *i*'s attempt to deviate from the equilibrium can be viewed as supplying a valuation ṽ ≠ v_i and playing b_i = β(ṽ).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Proof

- Suppose the bidders are in equilibrium, i.e. all play $\overline{b}_i = \beta(v_i)$.
- *i*'s attempt to deviate from the equilibrium can be viewed as supplying a valuation ṽ ≠ v_i and playing b_i = β(ṽ).
- The statement that b
 _i = β(v_i) gives an equilibrium means that for all v
 holds

$$V_i^{n-1} \cdot (V_i - \beta(V_i)) \geq \widetilde{V}^{n-1} \cdot (V_i - \beta(\widetilde{V}))$$

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Proof

A maximum of the function

$$v_i(v) = v^{n-1} \cdot (v_i - \beta(v))$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

must thus be reached for $\hat{v} = v_i$.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Proof

A maximum of the function

$$v_i(v) = v^{n-1} \cdot (v_i - \beta(v))$$

must thus be reached for $\hat{v} = v_i$.

• In other words, $\frac{dv}{dv}(v_i) = 0$ must hold for

$$\frac{dv}{dv} = (n-1)v^{n-2}(v_i - \beta) - v^{n-1}\frac{d\beta}{dv}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Proof.

Hence

$$\frac{d\beta}{dv}(v_i) = (n-1)\left(1-\frac{\beta(v_i)}{v_i}\right)$$

 Since this must hold for any v_i, we solve the differential equation, and get

$$\beta(\mathbf{v}_i) = \frac{n-1}{n} \cdot \mathbf{v}_i$$

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Summary

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

So much about single-item supply auctions

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Summary

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

Single-user demand auctions are somewhat similar.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Sequel

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Market protocols

Model

Bidding strategies

Summary

Matching

Market also gives rise to another kind of problems.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Outline

Introduction

Auctions

Matching demand and supply

Yes/no-utility

Valuations

Market clearing problem

Summary

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

・ロト・日本・日本・日本・日本・日本

Market problem

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Task

Provide the highest quality goods to the most interested buyers.

・ロト・日本・日本・日本・日本・日本

Matching problem

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Task

Match users and the items to maximize utility.

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ● ●

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Assign 5 students in 5 dorm rooms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bipartite graphs

A bipartite graph is a graphic view of

- a binary relation
- ► a 0/1-matrix

capturing the yes/no-utilities of a given set of users for a given set of items.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Definition

Perfect matching is a one-to-one assignment between the users and the items, such that each user is assigned one of the desired items.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching Yes/no-utility Valuations Market clearing

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

Perfect matching is a bijection between the users and the items contained in their yes/no-utility relation.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching Yes/no-utility Valuations

Market clearing Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Task

Find a perfect matching and we are done.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Task

Find a perfect matching and we are done.

Question

- Does every yes/no-utility allow perfect matching?
- Does every binary relation contain a bijection?

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Question

Can any set of users be satisfied with any set of items?

Answer

NO

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Answer

NO, e.g. if

all users only want the same item

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Answer

NO, e.g. if

- all users only want the same item
- some of the users do not accept any of the items

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Answer

NO, e.g. if

- all users only want the same item
- some of the users do not accept any of the items
- there is a set of n users who only accept m < n items</p>

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Answer

NO, e.g. if

- all users only want the same item
- some of the users do not accept any of the items
- there is a set of n users who only accept m < n items</p>
- there is a set of n items accepted by m < n users</p>

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Constricted sets

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Constricted sets

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A *constricted set of users* is a set of *n* users who only accept m < n items.

Matching Theorem

Theorem 1 (König)

A yes/no-utility allows perfect matching if and only if it does not contain a constricted set of users.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Matching problem: Valuations

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Valuations quantify preferences, and matchings

Matching problem: Valuations

II-4. Market

Introduction

Auctions Matching

Yes/no-utility

Valuations Market clearing Summary

The yes/no-utilities are a special case of valuations

▲□▶▲□▶▲□▶▲□▶ □ ● ●
Market is different

Market does not match

- users (with valuations) and items (passive), but
- buyers (with valuations) and sellers (pricing items).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction Auctions Matching Yes/no-utility Valuations

Market clearing Summary

Market relations: Preferred seller

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Buyer *B* seeks seller *S* so that $u_B^S = v_{BS} - p_S$ is maximal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Market relations: Preferred seller

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Each buyer may have multiple preferred sellers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A (toy) market consists of

- a set of buyers, and
- a set of sellers,

and moreover

- each seller determines a price for a single item,
- each buyer determines a valuation for each of the items.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Definition

Buyer B's utility for the item of the seller S is

$$u_B^S = v_{BS} - p_S$$

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Definition

Buyer B's utility for the item of the seller S is

$$u_B^S = v_{BS} - p_S$$

The set of preferred sellers for the buyer B is

$$\mathsf{Prs}_{B} = \left\{ \overline{S} \mid \forall S. \ u_{B}^{S} \le u_{B}^{\overline{S}} \right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Definition

Let the preferred seller relation for a given market be presented by a bipartite graph obtained by connecting each buyer with her preferred sellers.

We say that the market is *cleared* by a perfect matching contained in this bipartite graph.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Definition

Let the preferred seller relation for a given market be presented by a bipartite graph obtained by connecting each buyer with her preferred sellers.

We say that the market is *cleared* by a perfect matching contained in this bipartite graph.

The *market clearing prices* are the prices paid to the sellers when the market is cleared.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Market Clearing Theorem

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Theorem 2

For any matrix of buyers' valuations, there is a vector of market clearing prices.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Market clearing optimality

Definition

For any perfect matching that clears a market,

- the total valuation is the sum of all buyers' valuations for the items that they get, and
- the total payoff is the sum of all buyers' utilities for the items that they get.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Market clearing optimality

Theorem 3

For any matrix of buyers' valuations, there may be several market clearing vectors, but each of them achieves the maximal total valuation. II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Market clearing optimality

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Exercise

Prove Theorem 3.

・ロト・西ト・西ト・西ト・日・ション

Market clearing prices

Sketch of the proof of Theorem 2

- 1. Initialize all prices to 0.
- 2. Build the graph of preferred sellers.
- 3. If there is a perfect matching, clear the market and exit.
- Else find a minimal constricted set (using Theorem 1).
 - Increase all constricted prices.
 - Go to 2.

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Market clearing prices

Does this have to terminate? Example:

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

- Valuations
- Market clearing

Summary

Market clearing prices

Remark

Single-item auctions as a special case of market clearing:

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

・ロト・日本・日本・日本・日本・日本

Summary

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

Market protocols maximize the total utility through exchange of goods

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

Summary

- Auctions are the exchange protocols organized by the seller, or by the buyer
- The goal of auctions is to maximize auctioneer's revenue by eliciting true valuations from the bidders

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

- Matching algorithms aggregate individual preferences to maximize social benefit
- An honest market maker can maximize social benefit by clearing the market through perfect matching

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching

Yes/no-utility

Valuations

Market clearing

Summary

・ロト・日本・日本・日本・日本・日本・日本

Path ahead

Lecture 5: A closer look at markets-as-auctions

- In auctions, the market maker is a seller (or a buyer).
- Nevertheless, social benefit is maximized
 - the bidders follow their own utilities
 - if the auction is not compatible with bidders' incentives, then it yields no revenue
- What if the auctioneer sells (or buys) multiple items?
- What if the market maker is neither the seller nor the buyer?

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching Yes/no-utility Valuations

Market clearing Summary

Path ahead

Lectures 6-7: Problems of matching

- Interdependencies of valuations
 - values of goods may change through their market reception
 - positive or negative externalities
 - network effects
- Information asymmetries
 - distributed matching depends on the available information
 - market of information
 - advertising
 - differential pricing, tracking, predictive analytics

II-4. Market

Dusko Pavlovic

Introduction

Auctions

Matching Yes/no-utility

Valuations

Market clearing