II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Traders

Security & Economics — Part 5 Market with intermediaries and advertising

Dusko Pavlovic

Spring 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Introduction

Sponsored search

Market with intermediaries

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Introduction

Sponsored search

Market with intermediaries

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ○ ○ ○ ○

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

Market is a system of exchange protocols

- compute the prices
- regulate the exchange

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Market is a system of exchange protocols

- compute the prices
- regulate the exchange

We focus on computing the prices.

An auction is a market organized by

- a seller: supply auction
- a buyer: procurement auction

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Markets in general are organized by

universal buyers/sellers

- merchants, traders, dealers,
- entrepreneurs,
- advertisers (push), solicitors (pull)

who mediate among the buyers and the sellers

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Markets in general are organized by

universal buyers/sellers

- merchants, traders, dealers,
- entrepreneurs,
- advertisers (push), solicitors (pull)

who mediate among the buyers and the sellers

just like the universal goods

- money
- securities (bonds, equity, derivatives)

mediate among the goods

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

In this lecture

- Multi-item auctions
 - example: sponsored search
 - problem of incentive compatibility
 - Later: What is the value of advertising?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Market with intermediaries
 - traders' strategies
 - trading profits and social benefits

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

Outline

Introduction

Sponsored search

Sponsored search setting

Market vs auction

Generalized Second Price auction

Vickrey-Clarke-Groves Auction

Market with intermediaries

II-5. Intermediaries

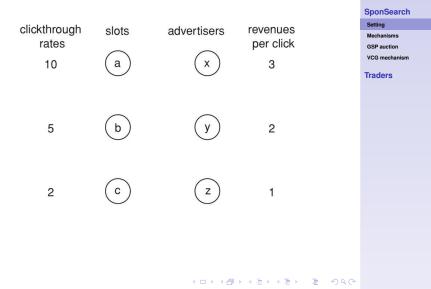
Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

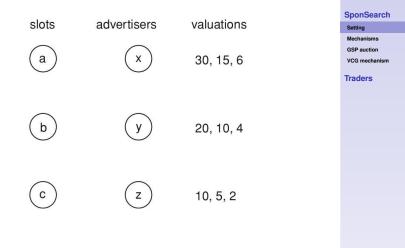

GSP auction

VCG mechanism

Traders

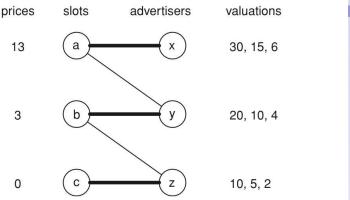
▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Sponsored search setting


II-5. Intermediaries Dusko Pavlovic

Introduction

Sponsored search as a matching problem


II-5. Intermediaries Dusko Pavlovic

Introduction

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sponsored search as a market

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

・ロト・西ト・西ト・西ト・日・

▶ *n* buyers, *n* item

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

▲□▶▲□▶▲□▶▲□▶ ▲□ シタぐ

- ▶ *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n − 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

- ► *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n − 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$
- item prices $p = (p_i)_n$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

- *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$
- item prices $p = (p_i)_n$
- matching $\sigma_{vp}: n \to n$ assigns item $\sigma_{vp}(i)$ to i

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- ► *n* buyers, *n* item
 - ▶ take n = {0, 1, ..., n 1}
- buyers valuations per item $v = (v_{ij})_{n \times n}$
- item prices $p = (p_i)_n$
- matching $\sigma_{vp}: n \rightarrow n$ assigns item $\sigma_{vp}(i)$ to i

• *i*'s utility $u_i \in \mathbb{R}$ is

$$u_i = v_{i\sigma_{vp}(i)} - p_{\sigma_{vp}(i)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Goal of the market mechanism

Maximize social welfare, i.e. buyers' total payoff

$$U(v, p) = \sum_{i \in n} u_i$$

= $\sum_{i \in n} v_{i\sigma_{vp}(i)} - p_{\sigma_{vp}(i)}$
= $\sum_{i \in n} v_{i\sigma(i,v)} - P$

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

where $P = \sum_{i < n} p_i$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Markets respect preference

To maximize utility, $\sigma_{vp}: n \rightarrow n$ maximizes valuations

$$V_{i\sigma(i,v)} \geq V_{ij}$$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

n bidders, *n* positions

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

・ロ・・ 日・・ 日・・ 日・ ・ 日・

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per position $\pi_{ij}(b) = p_i(b) \cdot r_j$ where
 - price per click $p(b) = (p_i(b))_n$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per position $\pi_{ij}(b) = p_i(b) \cdot r_j$ where
 - price per click $p(b) = (p_i(b))_n$
- matching $\tau : n \times \mathbb{R}^n \to n$ assigns item $\tau(i, b)$ to *i*

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

- n bidders, n positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per position $\pi_{ij}(b) = p_i(b) \cdot r_j$ where
 - price per click $p(b) = (p_i(b))_n$
- matching $\tau : n \times \mathbb{R}^n \to n$ assigns item $\tau(i, b)$ to *i*
- *i*'s utility $u_i : \mathbb{R}^n \to \mathbb{R}$ is

$$u_i(b) = v_{i\tau(i,b)} - \pi_{i\tau(i,b)}(b) = (w_i - p_i(b)) \cdot r_{\tau(i,b)}$$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Goal of the position auction mechanism

Maximize seller's revenue

$$P(b) = \sum_{i < n} \pi_{i_{\tau(i,b)}}(b)$$
$$= \sum_{i < n} p_i(b) \cdot r_{\tau(i,b)}$$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where

- all p_i grow with b
- bidder *i* bids b_i to maximize $u_i(b)$.

Position auctions respect preference

To maximize $p_i(b)$ with $u_i(b)$ always use

•
$$\tau(i,b) < \tau(j,b) \implies b_i \ge b_j$$
, i.e.

•
$$\tau(i, b) = j$$
 if b_i is *j*-th largest entry in *b*

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Assumption

The bidders are ordered¹ by their bids

$$b_1 > b_2 > b_3 > \cdots > b_n$$

The positions are ordered by click-through rates

 $r_1 > r_2 > r_3 > \cdots > r_n$

¹Recall: Since the priority of equal bids can be resolved by ordering the bidders e.g. by their names, with no loss of generality we assume that there are no equal bids.

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Generalized Second Price Auction

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Generalized Second Price Auction

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per click $p_i(b) = b_{i+1}$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Generalized Second Price Auction

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per click $p_i(b) = b_{i+1}$
- *i*'s utility $u_i : \mathbb{R}^n \to \mathbb{R}$ is

$$u_i(b) = (w_i - b_{i+1}) \cdot r_i$$

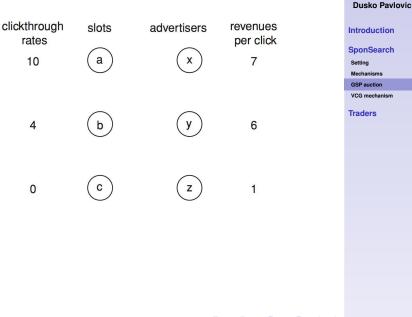
II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

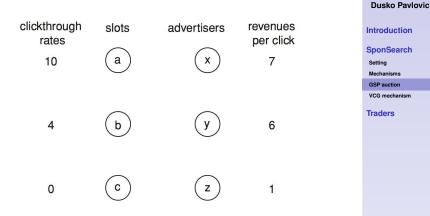

GSP auction

VCG mechanism

Traders

・ロト・日本・日本・日本・日本

Does GSP encourage truthful bidding?

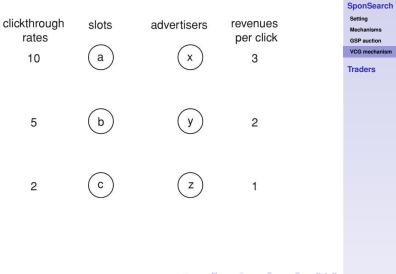


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

II-5.

Intermediaries

Does GSP encourage truthful bidding?


- with truthful bid: $u_x(7, 6, 1) = (7 6) \cdot 10 = 10$
- with untruthful bid: $u_x(5, 6, 1) = (7 1) \cdot 4 = 24$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

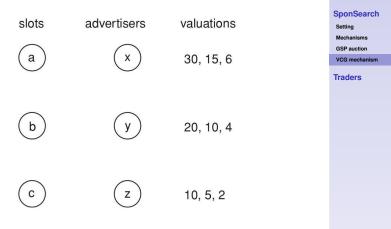
II-5.

Intermediaries

Position auction example

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ○ ○ ○ ○

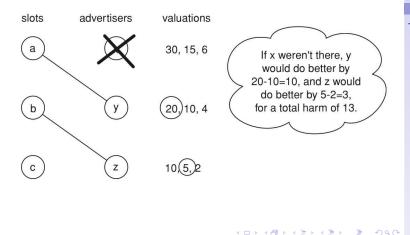
II-5.


Intermediaries Dusko Pavlovic

Introduction

Matching problem view

II-5. Intermediaries Dusko Pavlovic


Introduction

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

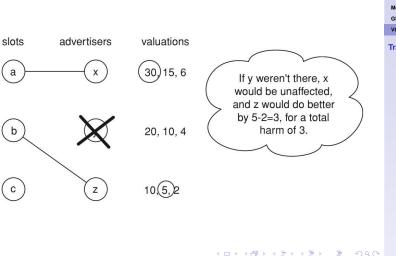
Idea

How much does x subtract from social welfare?

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch


Setting

Mechanisms

GSP auction

VCG mechanism

Idea

How much does y subtract from social welfare?

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Idea: Vickrey, Clarke, Groves

Each bidder should pay the cost that their bid incurs on social welfare

 i.e., the sum of the losses that they cause to other bidders

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

- B set of bidders
- S set of sellers (items)
- $v = (v_{ij})_{B \times S}$ bidders' valuations
- V_B^S maximal total valuation

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

- B set of bidders
- S set of sellers (items)
- $v = (v_{ij})_{B \times S}$ bidders' valuations
- V_B^S maximal total valuation

Remark

- If #B < #S, then add #S − #B bidders with all valuations 0</p>
- If #B > #S, then add #B − #S sellers valued 0 by all.

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Remember the assumption

The bidders are ordered by their bids

 $b_1 > b_2 > b_3 > \cdots > b_n$

The positions are ordered by click-through rates

$$r_1 \geq r_2 \geq r_3 \geq \cdots \geq r_n$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per item $\pi_{ij}(b) = V_{B\setminus i}^S V_{B\setminus i}^{S\setminus j}$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- *n* bidders, *n* positions
- bidders' valuations $v_{ij} = w_i \cdot r_j$ where
 - bidders' valuations per click $w = (w_i)_n$
 - position click-through rates $r = (r_j)_n$
- bidders bid $b = (b_i)_n$
- price per item $\pi_{ij}(b) = V_{B\setminus i}^{S} V_{B\setminus i}^{S\setminus j}$
- *i*'s utility $u_i : \mathbb{R}^n \to \mathbb{R}$ is

$$u_i(b) = v_{ii} - \pi_{ii}(b)$$

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

・ロト・日本・日本・日本・日本・日本

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem

The VCG auction is incentive compatible: truthful bidding is the unique Nash equilibrium for all players.

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Corollary

The VCG auction maximizes social wellfare, i.e. the total utility of bidders.

Problem

Homework

For the sponsored search market

clickthrough slots advertisers revenues per click rates a x 10 7 (y) 4 (ь) 6 (z) 0 (c) 1

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

compute seller's revenue (i.e. the total of the prices charged for all items) if the positions are auctioned by a GSP auction and by a VCG auction

Show that neither of these mechanisms maximizes seller's revenue.

Billion \$ problem

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Setting

Mechanisms

GSP auction

VCG mechanism

Traders

Design an auction mechanism that maximizes seller's revenue.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Introduction

Sponsored search

Market with intermediaries

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

シック・ 川 ・ 川 ・ 川 ・ 一日・

- There is just one type of goods.
- Every buyer needs to buy one item.
- Every seller needs to sell one item.

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Toy market

- buyers $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ have valuations v_i
- sellers $S = \{S_1, S_2, \dots, S_n\}$ have valuations w_i

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Traders

Toy market

• buyers $\mathcal{B} = \{B_1, B_2, \dots, B_n\}$ have valuations v_i

• sellers $S = \{S_1, S_2, \dots, S_n\}$ have valuations w_j

Remark

If the numbers are different, then add

- buyers with the valuation 0, or
- sellers with the valuation 1.

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Traders

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ● 臣 ● のへぐ

Toy market

Goal of the market

Find a bijection $\sigma: \mathcal{B} \to \mathcal{S}$ that maximizes social benefit

$$SB_{\sigma} = \sum_{i=1}^{n} v_i - w_{\sigma i}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Market with intermediaries

Just like the goods are compared through universal goods

- money, securities
- the buyers' and the sellers' are connected through universal buyers/sellers
 - merchants, traders, advertisers

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

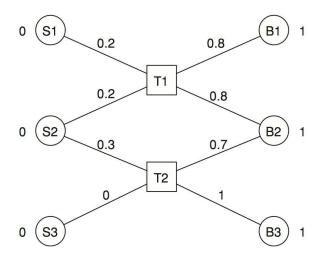
・ロト・日本・日本・日本・日本・日本・日本

Market with intermediaries

The intermediaries mediate the flows

- merchants buy, move and sell goods
- traders buy and sell goods without moving them

▲□▶▲□▶▲□▶▲□▶ □ のQ@


II-5.

Intermediaries

Introduction SponSearch Traders

advertisers and solicitors move information

Market with intermediaries

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

シック・ 川 ・ 川 ・ 川 ・ 一日・

Market with intermediaries as a game

• buyers $\mathcal{B} = \{B_1, B_2, B_3\}$

• their reserve prices (valuations) $v_1 = v_2 = v_3 = 1$

• sellers
$$S = \{S_1, S_2, S_3\}$$

• their reserve price (valuations) $w_1 = w_2 = w_3 = 0$

- traders $\mathcal{T} = \{T_1, T_2\}$
 - ▶ ask relation $T_1 \xrightarrow{a} B_1$, $T_1 \xrightarrow{a} B_2$, $T_2 \xrightarrow{a} B_2$, $T_2 \xrightarrow{a} B_3$
 - T_1 's buyers $\mathcal{B}_1 = \{B_1, B_2\}$
 - T_2 's buyers $\mathcal{B}_2 = \{B_2, B_3\}$
 - ▶ bid relation $S_1 \xrightarrow{b} T_1$, $S_2 \xrightarrow{b} T_1$, $S_2 \xrightarrow{b} T_2$, $S_3 \xrightarrow{b} T_2$
 - T_1 's sellers $S_1 = \{S_1, S_2\}$
 - T_2 's sellers $S_2 = \{S_2, S_3\}$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Traders

・ロト・日本・山田・山田・山口・

Market with intermediaries as a game

Setting

- buyers $\mathcal{B} = \{B_1, \ldots, B_n\}$
 - B_i's reserve price (valuation) is v_i
- sellers $S = \{S_1, \ldots, S_n\}$
 - S_j's reserve price (valuation) is w_j
- traders $\mathcal{T} = \{T_1, \ldots, T_m\}$
 - ask relation $\stackrel{a}{\rightarrow} \subseteq \mathcal{T} \times \mathcal{B}$
 - T_k 's buyers $\mathcal{B}_k = \{B_i \in \mathcal{B} \mid T_k \xrightarrow{a} B_i\}$
 - bid relation $\xrightarrow{b} \subseteq S \times T$
 - T_k 's sellers $S_k = \{S_j \in S \mid S_j \xrightarrow{b} T_k\}$

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

Market with intermediaries as a game Game

players: traders
$$T_1, \ldots, T_m$$

moves: for the trader T_k 's the set of moves is

$$P_k = Pb_k \times Pa_k$$
, where
 $Pb_k = \mathbb{R}^p$ with $p = \#S_k$
 $Pa_k = \mathbb{R}^q$ with $q = \#B_k$

where

- b_k = ⟨b_{k1}, b_{k2},..., b_{kp}⟩ ∈ Pb_k are T_k's bid prices for all S_j ∈ S_k
- a_k = ⟨a_{k1}, a_{k2}, ..., a_{kq}⟩ ∈ Pa_k are T_k's ask prices for all B_i ∈ B_k

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Market with intermediaries as a game

Play

- Each T_k announces its bid and ask prices $p_k = \langle b_k, a_k \rangle$
- Each S_i agrees to sell to a T_k with a maximal b_{ki}
- Each B_i agrees to buy from a T_k with a minimal a_{ki}
- Each T_k thus forms the sets of
 - ▶ suppliers $\mathcal{MS}_k = \left\{ S_j \in S_k \mid \forall \ell. \ b_{\ell j} \leq b_{k j} \right\}$
 - customers $\mathcal{MB}_k = \{B_i \in \mathcal{B}_k \mid \forall \ell. a_{ki} \leq a_{\ell i}\}$

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Market with intermediaries as a game Trader T_k 's utility

• If $\#M\mathcal{B}_k \leq \#M\mathcal{S}_k$ (sufficient supplies) then

$$u_k\left(ec{
ho}
ight) ~=~ \sum_{B_i \in \mathcal{MB}_k} a_{ki} - \sum_{S_j \in \mathcal{MS}_k} b_{kj}$$

• If $#MB_k > #MS_k$ (insufficient supplies) then

$$u_k\left(ec{p}
ight) = \sum_{B_i \in \mathcal{MB}_k^+} a_{ki} - \sum_{S_j \in \mathcal{MS}_k} b_{kj} - \sum_{B_i \in \mathcal{MB}_k^-} a_{ki}$$

where $\mathcal{MB}_k = \mathcal{MB}_k^+ \cup \mathcal{MB}_k^-$, and

- *MB*⁺_k is the set of #*MS*_k buyers who accepted the highest ask prices
- \mathcal{MB}_k^- are the remaining $\#\mathcal{MB}_k \#\mathcal{MS}_k$ buyers with the lowest ask prices

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Distribution of social benefit

If the bijection $\sigma: \mathcal{B} \to \mathcal{S}$ that maximizes social benefit

$$SB_{\sigma} = \sum_{i=1}^{n} v_i - w_{\sigma i}$$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Traders

is found through the traders $\kappa : \mathcal{B} \to \mathcal{T}$, then the benefit is distributed

$$SB_{\sigma} = \sum_{i=1}^{n} \underbrace{(v_i - a_{\kappa(i)i})}_{UB} + \underbrace{(a_{\kappa(i)i} - b_{\kappa(i)\sigma(i)})}_{UT} + \underbrace{(b_{\kappa(i)\sigma(i)} - w_{\sigma i})}_{US}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

where

- UB is the utility of the buyer
- UT is the utility of the trader
- US is the utility of the seller

Distribution of social benefit

If the bijection $\sigma: \mathcal{B} \to \mathcal{S}$ that maximizes social benefit

$$SB_{\sigma} = \sum_{i=1}^{n} v_i - w_{\sigma i}$$

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Traders

is found through the traders $\kappa : \mathcal{B} \to \mathcal{T}$, then the benefit is distributed

$$SB_{\sigma} = \sum_{i=1}^{n} \underbrace{(v_i - a_{\kappa(i)i})}_{UB} + \underbrace{(a_{\kappa(i)i} - b_{\kappa(i)\sigma(i)})}_{UT} + \underbrace{(b_{\kappa(i)\sigma(i)} - w_{\sigma i})}_{US}$$

where

- UB is the utility of the buyer
- UT is the utility of the trader
- US is the utility of the seller

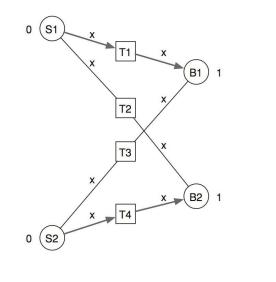
The traders maximize UT.

Distribution of social benefit

- But how do the traders achieve their payoffs?
- What are the equilibria in the trading game?

II-5. Intermediaries

Dusko Pavlovic


Introduction

SponSearch

Traders

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Implicit perfect competition

II-5. Intermediaries Dusko Pavlovic

Introduction

SponSearch

Traders

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Indifference principle

At equilibrium

- All bid prices offered to a seller must be equal
- The seller will accept the bid from the trader who has access to the highest paying buyers
 - because that trader can increase the bid by ε

II-5. Intermediaries Dusko Pavlovic

Introduction

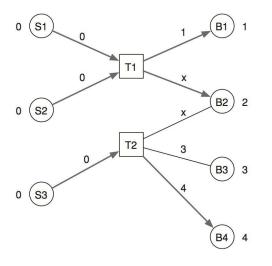
SponSearch

Traders

・ロト・日本・日本・日本・日本・日本

Indifference principle

At equilibrium


- All bid prices offered to a seller must be equal
- The seller will accept the bid from the trader who has access to the highest paying buyers
 - because that trader can increase the bid by ε
- All ask prices offered to a buyer must be equal
- The buyer will accept the offer from the trader who has access to the lowest charging sellers
 - because that trader can undercut the offer by ε

II-5. Intermediaries Dusko Pavlovic

Introduction

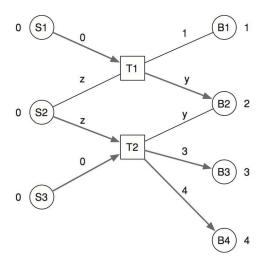
SponSearch

Ripple effects

II-5. Intermediaries

Dusko Pavlovic

Introduction


SponSearch

Traders

 $0 \le x \le 2$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Ripple effects

II-5. Intermediaries

Dusko Pavlovic

Introduction

SponSearch

Traders

 $1 \le y \le 2$ $1 \le z \le 3$

・ロト・西ト・西ト・西ト・日・