Security & Economics — Part 6 Network effects and self-fulfilling claims

Dusko Pavlovic

Spring 2014

II-6. Externalities Dusko Pavlovic

Introduction Positive effects Negative effects

・ロ・・ 日・・ 日・・ 日・ ・ 日・

Outline

Introduction

Positive network effects and self-fulfilling expectations

Negative network effects and minority game

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Introduction

Positive network effects and self-fulfilling expectations

Negative network effects and minority game

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Three witches

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

・ロ・・ 日・・ 日・・ 日・ ・ 日・

Three witches' prophecy

First Witch: All hail, Macbeth! Hail to thee, Thane of Glamis!

Second Witch: All hail, Macbeth, hail to thee, Thane of Cawdor!

Third Witch: All hail, Macbeth, thou shalt be King hereafter!

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

・ロト・西ト・西ト・日・ ウヘぐ

Self-fulfilling prophecy

1. Macbeth is just a little spooked that the witches knew that he was Thane of Glamis.

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Self-fulfilling prophecy

- 1. Macbeth is just a little spooked that the witches knew that he was Thane of Glamis.
- Macbeth gets promoted into Thane of Cawdor by the King — and recognizes the prophecy.

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Self-fulfilling prophecy

- 1. Macbeth is just a little spooked that the witches knew that he was Thane of Glamis.
- Macbeth gets promoted into Thane of Cawdor by the King — and recognizes the prophecy.
- 3. Macbeth kills the King and realizes the prophecy.

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

How does future forecasting work?

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Negative effects

Why do we believe in stars at 30000 light years away?

Is lying sometimes a rational strategy?

Is lying effective? If not, why do we lie?

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Negative effects

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Why do we advertise?

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

If the market is efficient, and computes the right prices, why is it rational to invest in advertising?

Outline

Introduction

Positive network effects and self-fulfilling expectations

Economy of demand and intrinsic values

Economy with externalities

Negative network effects and minority game

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

・ロト・西ト・西ト・日・ ウヘぐ

Demand and valuation

Market computes the demand for a product

demand: q(y) = x — the quantity required at the price y valuation: r(x) = y — the reserve price for x consumers

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

・ロト・日本・日本・日本・日本・日本

Demand and valuation are inverses

Market computes the demand for a product

demand: $q(r(x)) = x \in [0, 1]$ — fraction of consumers valuation: $r(q(y)) = y \in [0, \infty]$ — value derived from use

II-6. Externalities Dusko Paylovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

・ロト・日本・日本・日本・日本・日本

Intuitions

demand: consumers' names are $x \in [0, 1]$

ordered by their valuations for the good F

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- if x purchases Γ, then
 - all $x' \in [0, x]$ purchase Γ ,
 - because $r(x') \ge r(x)$, and

II-6. Externalities Dusko Paylovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Intuitions

demand: consumers' names are $x \in [0, 1]$

- ordered by their valuations for the good F
- if x purchases Γ, then
 - all $x' \in [0, x]$ purchase Γ ,
 - because $r(x') \ge r(x)$, and

valuation: prices are $y \in [0, \infty]$

- ordered by the demand for Γ
- ▶ if y > y' then
 - q(y) < q(y'), and
 - All x ∈ [0, q(y')] will buy Γ
 - for $r(x) \in [y', 1]$

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Equilibrium of demand and supply

• Let $p = y^*$ be the fixed (average) production cost.

- The products will be priced at y > y*.
- The buyers $x < x^* = q(y^*)$ will purchase Γ at

• the prices
$$y > y^* = r(x^*)$$
.

• The market will demand $x^* = q(y^*)$ of Γ .

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Self-fulfilling

Equilibrium of demand and supply

• Let $p = y^*$ be the fixed (average) production cost.

- The products will be priced at y > y*.
- The buyers $x < x^* = q(y^*)$ will purchase Γ at

• the prices
$$y > y^* = r(x^*)$$
.

- The market will demand $x^* = q(y^*)$ of Γ .
- $\langle x^*, y^* \rangle$ is the *demand-supply equilibrium*

• where
$$y^* = r(x^*)$$

II-6. Externalities Dusko Paylovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Self-fulfilling

Social benefit at the equilibrium

$$SB(x^*) = \int_0^{x^*} r(x) dx - x^* r(x^*)$$

is the difference of the total utility $\int_0^{x^*} r(x) dx$ and the production cost $x^* p = x^* r(x^*)$, i.e. the upper triangle in

II-6. Externalities Dusko Pavlovic Introduction Positive effects Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 - のへで

Intrinsic values and externalities

Intrinsic values of goods are expressed through their market prices and their production costs.

Externalities are the values of goods taken by those who are neither producers nor consumers of these goods.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Examples of externalities

Positive:

public health, security, education
freeware, creative commons
social adoption of shared applications

Negative:

- pollution, environmental change
- exploitation of resources (e.g. fishing)
- systemic risk (e.g. in banking)
- congestion
- price increase due to demand

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Valuations with externalities

Market adoption influences the valuation

$$v(x,z) = r(x) \cdot f(z)$$

where

- r(x) is the intrinsic valuation
 - x's reserve price if market fully adopts Γ
- f(z) is the network effect
 - price change if z-part of the market adopts F

II-6. Externalities Dusko Pavlovic

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Valuations with positive externalities

▶ $r: [0,1] \rightarrow [0,1]$ is monotone decreasing function

• e.g.
$$r(x) = 1 - x$$

- r(0) = 1: Γ is not valued at ∞^* by anyone
- r(1) = 0: Γ has no value for some consumers

▶
$$f : [0, 1] \rightarrow [0, 1]$$
 is monotone increasing function

- f(0) = 0: Γ has no value if no adoption
- f(1) = 1: Γ has full value with full adoption

*[0, 1] represents the price interval [0,∞] → </

II-6. Externalities Dusko Paylovic

.....

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Let p* be the fixed (average) production cost.

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

・ロ・・ 日・・ 日・・ 日・ ・ 日・

- Let p* be the fixed (average) production cost.
- Suppose that x knows that
 - z*-part of the market has adopted Γ

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Self-fulfilling

- Let p* be the fixed (average) production cost.
- Suppose that x knows that
 - *z**-part of the market has adopted Γ
 ↓
 - ▶ for all x' holds $x' \in [0, z^*] \iff x'$ has bought Γ

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

- Let p* be the fixed (average) production cost.
- Suppose that x knows that
 - *z**-part of the market has adopted Γ
 ↓
 - ► for all x' holds $x' \in [0, z^*] \iff x'$ has bought Γ \updownarrow
 - ▶ for all x' holds $x' \in [0, z^*] \iff r(x')f(z^*) \ge p^*$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

- Let p* be the fixed (average) production cost.
- Suppose that x knows that
 - *z**-part of the market has adopted Γ
 ↓
 - ▶ for all x' holds $x' \in [0, z^*] \iff x'$ has bought Γ \updownarrow
 - ► for all x' holds $x' \in [0, z^*] \iff r(x')f(z^*) \ge p^*$ \downarrow

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$r(x)f(z^*) \ge p^* \iff x \in [0, z^*]$$

II-6.
Externalities
Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

- Let p* be the fixed (average) production cost.
- Suppose that x knows that
 - *z**-part of the market has adopted Γ
 ↓
 - ► for all x' holds $x' \in [0, z^*] \iff x'$ has bought Γ \updownarrow
 - ► for all x' holds $x' \in [0, z^*] \iff r(x')f(z^*) \ge p^*$ ↓
 - $r(x)f(z^*) \ge p^* \iff x \in [0, z^*]$
 - x will buy $\Gamma \iff x \le z^*$

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ― 国 - のへで

- Let p* be the fixed (average) production cost.
- Suppose that x knows that
 - *z**-part of the market has adopted Γ
 ↓
 - ► for all x' holds $x' \in [0, z^*] \iff x'$ has bought Γ \updownarrow
 - ► for all x' holds $x' \in [0, z^*] \iff r(x')f(z^*) \ge p^*$ ↓

 - x will buy $\Gamma \iff x \le z^*$
- \$\lap\$ \$\lap\$
 - ▶ where p^{*} = r(z^{*})f(z^{*})

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Calculating equilibria

Given

- fixed production price p*
- reserved price function r(z) = 1 z
- network effect f(z) = z
- valuation $v(z) = z(1-z) = z z^2$

the equilibria $\langle \hat{z}, p^* \rangle$ satisfy $\hat{z} - \hat{z}^2 = p^*$.

II-6. Externalities Dusko Pavlovic Introduction Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Dynamics of market adoption

•
$$z \in [0, z')$$
: $v(z) < p^*$ causes $z \searrow 0$

•
$$z = z'$$
: $v(z) = p^*$ makes z stable

•
$$z \in (z', z'')$$
: $v(z) > p^*$ causes $z \nearrow z''$

•
$$z = z''$$
: $v(z) = p^*$ makes z stable

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Tipping point

The Secret of Network Startups

The unstable equilibrium z' is a *tipping point*:

- If the adoption is not pushed to z', the demand will drop to 0.
- If the adoption is pushed past z', the demand will grow to z".

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-6. Externalities Dusko Paylovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Tipping point

The Silicon Valley Imperative (Brian Arthur)

- Push down z':
 - Iower the price p* (free trials ...)
 - widen the parabola v(z) by speeding up f(z)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Tipping point

The Silicon Valley Imperative (Brian Arthur)

- Push down z':
 - Iower the price p* (free trials ...)
 - widen the parabola v(z) by speeding up f(z)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

∜

The adoption attractor z" will go up.

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Let p* be the fixed (average) production cost.

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Self-fulfilling

- Let p* be the fixed (average) production cost.
- Suppose that x believes that z-part of the market has adopted Γ (which may not be true).

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Let p* be the fixed (average) production cost.
- Suppose that x believes that z-part of the market has adopted Γ (which may not be true).
 - x purchases $\Gamma \iff r(x)f(z) \ge p^*$

Introduction

Positive effects

Demand

Externalities

Adoption eq

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Self-fulfilling

- Let p* be the fixed (average) production cost.
- Suppose that x believes that z-part of the market has adopted Γ (which may not be true).
 - x purchases $\Gamma \iff r(x)f(z) \ge p^*$

• x purchases
$$\Gamma \iff x \le r^{-1} \left(\frac{p^*}{f(z)} \right)$$

II-6. Externalities Dusko Pavlovic

Positive effects

Demand

Externalities

Adoption eq

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Self-fulfilling

- Let p* be the fixed (average) production cost.
- Suppose that x believes that z-part of the market has adopted Γ (which may not be true).
 - $x \text{ purchases } \Gamma \iff r(x)f(z) \ge p^*$
 - x purchases $\Gamma \iff x \le r^{-1} \left(\frac{p^*}{f(z)} \right)$
- The true market adoption (depending on the belief z) is

$$g(z) = q\left(\frac{p^*}{f(z)}\right)$$

because $r^{-1} = q$.

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

・ロト・西ト・西ト・日・ ウヘぐ

Example of adoption function

Given

- fixed production price p*
- ▶ reserved price r(z) = 1 z, demand $q(z) = r^{-1}(z) = 1 z$
- network effect f(z) = z

the true adoption is
$$\widehat{z} = g(z) = \begin{cases} 0 & \text{if } z \le p^* \\ 1 - \frac{p^*}{z} & \text{otherwise} \end{cases}$$

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Finding self-fulfilling equilibrium

•
$$g(z) = \widehat{z} \le z \in [0, z')$$
: $v(\widehat{z}) < p^* \text{ causes } \widehat{z} \searrow 0$

•
$$g(z) = \widehat{z} = z'$$
: $v(\widehat{z}) = p^*$ makes \widehat{z} stable

•
$$g(z) = \widehat{z} \ge z \in (z', z'')$$
: $v(\widehat{z}) > p^*$ causes $\widehat{z} \nearrow z''$

•
$$g(z) = \widehat{z} = z''$$
: $v(\widehat{z}) = p^*$ makes \widehat{z} stable

•
$$g(z) = \widehat{z} \le z \in (z'', 1]$$
: $v(\widehat{z}) < p^*$ causes $\widehat{z} \searrow z''$

II-6. Externalities Dusko Pavlovic Introduction Positive effects Demand Externalities Adoption eq Self-fulfilling

Finding self-fulfilling equilibrium

•
$$g(z) = \widehat{z} \le z \in [0, z')$$
: $v(\widehat{z}) < p^* \text{ causes } \widehat{z} \searrow 0$

•
$$g(z) = \widehat{z} = z'$$
: $v(\widehat{z}) = p^*$ makes \widehat{z} stable

•
$$g(z) = \widehat{z} \ge z \in (z', z'')$$
: $v(\widehat{z}) > p^*$ causes $\widehat{z} \nearrow z''$

•
$$g(z) = \widehat{z} = z''$$
: $v(\widehat{z}) = p^*$ makes \widehat{z} stable

•
$$g(z) = \widehat{z} \le z \in (z'', 1]$$
: $v(\widehat{z}) < p^*$ causes $\widehat{z} \searrow z''$

II-6. Externalities Dusko Pavlovic Introduction Positive effects Demand Externalities Adoption eq Setf-lutfilling

Self-fulfilling equilibrium when f(0) > 0

II-6. Externalities Dusko Pavlovic

Positive effects

Demand

Externalities

Adoption eq

Self-fulfilling

Negative effects

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

 $\hat{z} = z$

 $\hat{z} = g(z)$

Self-fulfilling equilibrium when $f(0) > p^*$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

II-6.

Externalities Dusko Pavlovic

Summary

Why do we lie?

- If you convince > z' people that you are King,
- then they will help you to subjugate z" people.

II-6. Externalities Dusko Pavlovic Introduction Positive effects Demand Extenalities Adoption eq Self-fulfiling

Outline

Introduction

Positive network effects and self-fulfilling expectations

Negative network effects and minority game

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

El Farol Bar, Santa Fe NM

II-6. Externalities Dusko Pavlovic

Introduction

Positive effects

Negative effects

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

El Farol Problem: Minority Game

- capacity: 60 places
- attraction: music nights
- customers: 100 music fans
 - ▶ # visitors ≤ 60 ⇒ pleasant
 - ▶ # visitors > 60 ⇒ unpleasant
- ▶ goal of the game: visit El Farol when # visitors ≤ 60

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Minority Game

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

- players: *i* = 1, 2, ..., 100
- moves: $A_i = \{Y, N\}$, for all *i*
- payoffs:

$$u_i(a) = \begin{cases} 1 & \text{if } \#\{k|a_k = a_i\} \le 60\\ -1 & \text{if } \#\{k|a_k = a_i\} > 60 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Minority Game

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

Exercise

Analyze Nash equilibria in this game.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Minority Game

Negative feedback

The members of the majority have a *joint* incentive to switch.

・ロト・日本・日本・日本・日本・今日・

- "No one goes to El Farol. It's too busy."
- ► The Nash equilibria are *unstable*.

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Recall: Network effects

- Let p* be the fixed (average) production cost.
- Suppose that x believes that z-part of the market has adopted Γ (which may not be true).
- The true market adoption (depending on the belief z) is

$$g(z) = q\left(\frac{p^*}{f(z)}\right)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

because $r^{-1} = q$.

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative network effects

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

Given

- fixed production price p*
- ▶ reserved price r(z) = 1 z, demand $q(z) = r^{-1}(z) = 1 z$

• network effect
$$f(z) = \begin{cases} z & \text{if } z \le .6\\ 1-z & \text{if } z > .6 \end{cases}$$

the true adoption is
$$\widehat{z} = g(z) = \begin{cases} 0 & \text{if } z \le p^* \\ 1 - \frac{p^*}{z} & p^* < z \le .6 \\ 1 - \frac{p^*}{1-z} & .6 < z \end{cases}$$

Dynamics of El Farol Bar

II-6. Externalities

Dusko Pavlovic

Introduction

Positive effects

Negative effects

ongoing research

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●