Security & Economics — Part 7 Towards information security of market

Dusko Pavlovic

Spring 2014

EMH

Introduction

Market of lemons

The Efficient Market Hypothesis

Introduction

Lemons

EMH

Introduction

Market of lemons

The Efficient Market Hypothesis

Symmetric market

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Symmetric market

Based on trust

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Symmetric market

II-7. Asymmetry

Dusko Pavlovic

Introduction

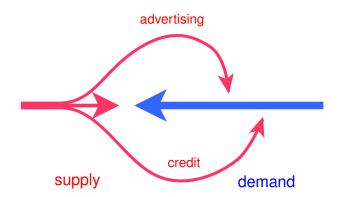
Lemons

EMH

supply

demand

Economics of information

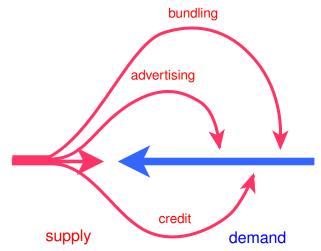

advertising supply demand II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Economics of information


II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Economics of information

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Asymmetric market

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

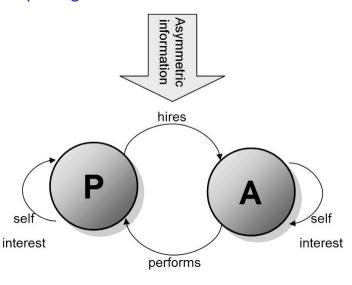
EMH

Based on influence

4回 → 4回 → 4 回 → 4 回 → 9 へ ○

Moral hazard

Transferring risks: government-backed lending


II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Principal Agent Problem

Agent acts against the Principal: bankers' bonuses

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Rent Seeking

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

EMH

Profits on social expense: guilds, lobbying, advertising

Market of lemons

Profiting from lack of information

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Phishing for phools

Creating lack of information: "Financial derivative"

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

- security goal: equilibrium of supply and demand
- security protocol: free exchange
- "attacks above": advertising, information asymmetry
 - security protocol correctly executed
 - security goal shifted

Outline

Introduction

Market of lemons

Akerloff's analysis

Expectations analysis

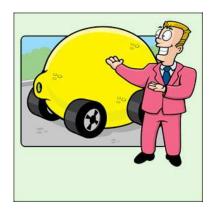
Signaling and authentication

The Efficient Market Hypothesis

II-7. Asymmetry

Dusko Pavlovic

Introduction


Lemons

Akerloff

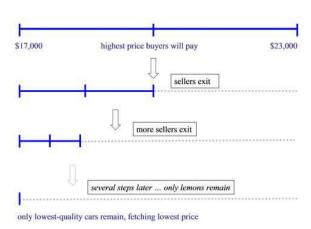
Expectations Signaling

ЕМН

Market of lemons

II-7. Asymmetry

Dusko Pavlovic


Introduction

Lemons

Akerloff Expectations

Signaling

Market of lemons

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Akerloff Expectations

Signaling

Signaling

EMH

valuations:

	good cars	lemons
sellers	Х	0
buyers	$\frac{3}{2}X$	0

- quality distribution: q-fraction of cars is worth $\frac{qx}{2}$ on the average
- demand:

#buyers > #cars for sale

- 1. Symmetric information
 - Both sellers and buyers can tell which cars are good.
 - Each good car is sold for its true value.
 - The lemons are unsold or given for free.
 - ► Since #buyers > #cars for sale, the market clears.

- 2. Asymmetric information: Naive buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_0 \in \left[0, \frac{3x}{2}\right]$ uniformly distributed
 - offer the average price $p_0 = \frac{3x}{4}$.
 - The sellers
 - withdraw the cars with sellers' values $v \in \left(\frac{3x}{4}, x\right]$ and
 - ► clear the $\frac{3}{4}$ of the cars with sellers' values $v \in \left[0, \frac{3x}{4}\right]$
 - The buyers
 - get the average value $w_1 = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{3x}{2} = \frac{9x}{16}$
 - pay the average price $p_0 = \frac{3x}{4}$

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_0 \in \left[0, \frac{3x}{2}\right]$ uniformly distributed
 - offer the average price $p_0 = \frac{3x}{4}$.
 - The sellers
 - ▶ withdraw the cars with sellers' values $v \in \left(\frac{3x}{4}, x\right]$ and
 - ► clear the $\frac{3}{4}$ of the cars with sellers' values $v \in \left[0, \frac{3x}{4}\right]$
 - The buyers
 - ▶ know that the values are now $w_1 \in \left[0, \frac{3}{4} \cdot \frac{3x}{2}\right] = \left[0, \frac{9x}{8}\right]$
 - offer the average price $p_1 = \frac{9x}{16}$

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_1 \in \left[0, \frac{9x}{8}\right]$ uniform
 - offer the average price $p_1 = \frac{9x}{16}$.
 - The sellers
 - withdraw the cars with sellers' values $v \in \left(\frac{9x}{16}, x\right]$ and
 - ► clear the $\frac{9}{16}$ of the cars with sellers' values $v \in \left[0, \frac{9x}{16}\right]$
 - The buyers
 - ▶ know that the values are $w_2 \in \left[0, \frac{9}{16} \cdot \frac{3x}{2}\right] = \left[0, \frac{27x}{32}\right]$
 - offer the average price $p_2 = \frac{27\tilde{\chi}}{64}$

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.
 - The buyers
 - expect the cars with $w_2 \in \left[0, \frac{27x}{32}\right]$ uniformly distributed
 - offer the average price $p_1 = \frac{27x}{64}$.
 - The sellers
 - withdraw the cars with sellers' values $v \in \left(\frac{27x}{64}, x\right]$ and
 - ► clear the $\frac{27}{64}$ of the cars with values $v \in \left[0, \frac{27x}{64}\right]$
 - The buyers
 - ▶ know that the values are $w_3 \in \left[0, \frac{81x}{128}\right]$
 - offer the average price $p_3 = \frac{81\bar{x}}{256}$

- 3. Asymmetric information: Rational buyers
 - Only sellers know which cars are good.

 \triangleright $w, p \searrow 0$

► The market collapses!

valuations:

	good cars	bad cars
sellers	5	2
buyers	6	3

• quality: there is $a \in [0, 1]$

cars for sale
$$= a \cdot good cars + (1 - a) \cdot bad cars$$

demand:

#buyers > #cars for sale

Signaling

- Symmetric information
 - ▶ Both sellers and buyers know which cars are good.
 - ▶ Each good car is sold for $p \in [5, 6]$.
 - ▶ Each bad car is sold for $p \in [2, 3]$.
 - ► Since #buyers > #cars for sale, the market clears.

Asymmetric information

- Only sellers know which cars are good.
- Buyers estimate that

cars for sale $= e \cdot good cars + (1 - e) \cdot bad cars$

for some $e \in [0, 1]$ and they offer per car

$$p^* = 6e + 3(1 - e) = 3e + 3$$

Game of second-hand cars

- II-7. Asymmetry
- **Dusko Pavlovic**
- Introduction
- Lemons
- Akerloff Expectations
- Signaling
- EMH

- ► The buyers' determine their moves by choosing a belief $e \in [0, 1]$.
- The sellers accept to sell if their reserve prices are met.

The cases

- ▶ belief *e* vs reality *a*
 - if $e \in (a, 1]$, then the buyers' overpay the average value of the cars
 - ▶ if $e \in [0, a]$, then the buyers don't overpay
- ▶ offer 3e + 3 vs valuation intervals [2,3] and [5,6]
 - if $e \in \left[\frac{2}{3}, 1\right]$, then $p^* = 3e + 3 \in [5, 6]$ clears all cars
 - if $e \in (0, \frac{2}{3})$, then $p^* = 3e + 3 \in (3, 5)$ overpays the bad cars and does not get the good cars,
 - if e = 0, then $p^* = 3$ clears the bad cars.

- Combining the cases into equilibria
 - ▶ if $e \in \left[\frac{2}{3}, a\right]$, then $p^* = 3e + 3 \in [5, 6]$ clears all cars, and does not overpay them
 - if e = 0 then p* = 3 clears the bad cars, and does not overpay them

Summary

The equilibria are

- ▶ buying all cars with e = a and $p^* = 3a + 3 \in [5, 6]$, provided that $a \in \left[\frac{2}{3}, 1\right]$
- ▶ buying only bad cars with e = 0 and $p^* = 3$

Expectations Signaling

ЕМН

valuations:

	good cars	bad cars	lemons
sellers	5	2	0
buyers	6	3	0

quality:

all =
$$\frac{1}{3} \cdot \text{good} + \frac{1}{3} \cdot \text{bad} + \frac{1}{3} \cdot \text{lemons}$$

demand:

EMH

Symmetric information

- ▶ Both sellers and buyers know which cars are good.
- ▶ Each good car is sold for $p \in [5, 6]$.
- ▶ Each bad car is sold for $p \in [2, 3]$.
- ▶ Each lemon is sold for p = 0, or unsold.
- The market of value clears.

- Asymmetric information
 - Only the sellers can tell the cars apart.
 - Like before, the buyers settle on the expectation

cars for sale
$$= \frac{1}{3} \cdot good + \frac{1}{3} \cdot bad + \frac{1}{3} \cdot lemons$$

and they are willing to pay per car

$$p_1^* = \frac{1}{3} \cdot 6 + \frac{1}{3} \cdot 3 = 3$$

► Since p_1^* < 5, the good cars are withdrawn.

- Asymmetric information
 - Only the sellers can tell the cars apart.
 - Like before, the buyers settle on the expectation

cars for sale
$$= \frac{1}{2} \cdot bad + \frac{1}{2} \cdot lemons$$

so that the buyers are willing to pay per car

$$p_2^* = \frac{1}{2} \cdot 3 = \frac{3}{2}$$

► Since p_2^* < 2, the bad cars are withdrawn.

- Asymmetric information
 - Only the sellers can tell the cars apart.
 - Like before, the buyers settle on the expectation

cars for sale = lemons

so that the buyers are willing to pay per car

$$p_3^* = 0$$

The market collapses!

EMH

Information is provided in *authenticated signals*:

- certificates
- warranties
- reputation and feedback systems
- risk sharing

EMH

Collateralized debt obligations (CDOs)

- Mortgages are a risky investment for banks:
 - default risks: loss
 - prepayment risks: no profit
- CDOs are bundles of mortgages
 - risky mortgages are packaged with safe mortgages
 - the risks are averaged out

Example

Collateralized debt obligations (CDOs)

- ▶ Let a CDO A consist of
 - 100 mortgages
 - each worth 1M
 - default probability 10%
 - ► expected value of \mathcal{A} is 90M

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Expectations

Signaling

Example

Collateralized debt obligations (CDOs)

- ▶ Let a CDO A consist of
 - 100 mortgages
 - each worth 1M
 - ▶ default probability 10% ← lemons
 - ▶ expected value of A is 90M

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Expectations

Signaling

Collateralized debt obligations (CDOs)

- Let a CDO A consist of
 - 100 mortgages
 - each worth 1M
 - ▶ default probability 10% ← lemons
 - expected value of A is 90M
- ▶ Problem: assure the buyer that the risk is ≤ 10%
- ► Solution: seller keeps the risky part of A
 - sell senior tranche: 85%
 - keep junior tranche: 15%
 - all defaults up to 15% go into the junior tranche

Market information security

Market is an information processing plant

input: behaviors and utilities

output: prices

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons Akerloff

Expectations

Signaling

input: behaviors and utilities

output: prices

Security requirements on the market

confidentiality: conceal private data (valuations...)

authenticity: prove public data (CDOs...)

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

Expectations

Signaling

- Market is an information processing plant
 - input: behaviors and utilities
 - output: prices
- Security requirements on the market
 - confidentiality: conceal private data (valuations...)
 - authenticity: prove public data (CDOs...)
- Attacks on the market
 - against confidentiality and privacy: tracking, differential pricing...
 - against integrity and authenticity: spam, phishing, maladvertizing, booby-trapped CDOs...
 - moral hazard, principal-agent problem|, rent-seeking...
 - fraud: pyramid schemes, Libor rigging, malicious short selling...

Outline

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

EMH

Introduction

Market of lemons

The Efficient Market Hypothesis

Efficient Market Hypothesis

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

EMH

"Prices fully reflect all available information."

Eugene Fama

Question

What is "all available information"?

Answer

- weak EMH: past prices
- semi-strong EMH: public information (past prices, news...)
- strong EMH: public and private information (valuations, strategies, inside information...)

Question

What does it mean that "Prices reflect all available information"?

Answer (P. Samuelson)

It means that there are no arbitrage opportunities on the market, i.e. that the random variable

X =expected return – predicted return

- is unpredictable
- has the mean value 0

Question

Why do prices reflect available information?

Answer

Otherwise, there would be arbitrage opportunities

▶ i.e., there would be successful gambles on X, based on additional information

Efficient Market Hypothesis

II-7. Asymmetry

Dusko Pavlovic

Introduction

Lemons

EMH on street

Eugene Fama is walking down the street with a friend. They come upon a \$100 bill lying on the ground. The companion reaches down to pick it up, but Fama says: "Don't bother. If it were a genuine \$100 bill, someone would have already picked it up".

Social choice mechanisms

- market
- voting

Social choice mechanisms

- Why do the bubbles happen?
- How long can the mass delusions persist?
- Does the truth always triumph in the end?