II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Security & Economics — Part 8 Social welfare and social choice

Dusko Pavlovic

Spring 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Outline

Introduction

Social welfare and preference aggregation

Social choice and manipulability

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Outline

Introduction

Social welfare and preference aggregation

Social choice and manipulability

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Social choice

Kenneth Arrow's Thesis (1948, 1951)

'In a capitalist democracy there are essentially two methods by which social choices can be made:

- voting, typically used to make "political" decisions, and
- the market mechanism, typically used to make "economic" decisions.'

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Social choice

Kenneth Arrow's Thesis (1948, 1951)

... In the emerging democracies with mixed economic systems, Great Britain, France, and Scandinavia, the same two modes of making social choices prevail, though more scope is given to the method of voting and decisions based directly or indirectly on it and less to the rule of the price mechanism. Elsewhere in the world, and even in smaller social units within the democracies, social decisions are sometimes made by single individuals or small groups.'

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

There are 11 voters and 3 candidates: a, b and c. The voters need to elect one candidate. They have different preferences.

Describe a method to elect the candidate which satisfies most voters.

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Suppose the preferences are as follows:

voters	preference
3	a > b > c
2	a > c > b
2	b > c > a
4	c > b > a

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ●

Suppose the preferences are as follows:

voters	preference
3	a > b > c
2	a > c > b
2	b > c > a
4	c > b > a

If each voter casts 1 vote, then the tally is 5:4:2 for a > c > b.

Introduction

Welfare

Elections

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Suppose the preferences are as follows:

voters	preference
3	a > b > c
2	a > c > b
2	b > c > a
4	c > b > a

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

- If each voter casts 1 vote, then the tally is 5:4:2 for a > c > b.
- ► If each voter casts (1,1) votes, then the tally is 9:8:5 for b > c > a.

Suppose the preferences are as follows:

voters	preference
3	a > b > c
2	a > c > b
2	b > c > a
4	c > b > a

If each voter casts 1 vote, then the tally is 5:4:2 for a > c > b.

- If each voter casts (1,1) votes, then the tally is 9:8:5 for b > c > a.
- If each voter casts (2,1) votes, then the tally is 12:11:10 for c > b > a

II-8. Voting Dusko Pavlovic Introduction Welfare

Outline

Introduction

Social welfare and preference aggregation

Social choice and manipulability

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Preference relation

Definition

A *preference* over a set S is a binary relation \succ on S such that for all $X, Y, Z \in S$ holds

$$X > Y \land Y > Z \implies X > Z$$
$$(X > Y \lor Y > X) \land X \neq X$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Preference relation

Definition

A *preference* over a set S is a binary relation \succ on S such that for all $X, Y, Z \in S$ holds

$$X > Y \land Y > Z \implies X > Z$$
$$(X > Y \lor Y > X) \land X \neq X$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

We write $x \sim y$ when $x > y \land y > x$ holds.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Recall: Utility function

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Definition

A *utility function* corresponding to a preference preorder $\succ \subseteq S \times S$ is a function $u : S \to \mathbb{R}$ such that

$$u(X) > u(Y) \iff X > Y$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Recall: Utility function

II-8. Voting Dusko Pavlovic

Introduction

Welfare

Elections

Remark

When the preferences involve random events, then the argument *X* in a utility function u(X) is a random variable.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Preference space

Definition

The *preference space* over a set S is the set \mathbb{P} of all preference relations > over S

$$\mathbb{P} = \left\{ \succ \subseteq S \times S \mid X \succ Y \succ Z \implies X \succ Z \right\}$$
$$\land (X \succ Y \lor Y \succ X) \right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Definition

For a society consisting of the players i = 1, 2, ..., n, a *social welfare function (swf)* is a mapping

$$\begin{array}{rcl} \langle - \mathcal{J}_{W} & : \mathbb{P}^{n} & \to \mathbb{P} \\ & & \succ & \langle \succ \mathcal{J}_{W} \end{array}$$

where $\succ = \langle \stackrel{1}{\succ}, \stackrel{2}{\succ}, \dots, \stackrel{n}{\succ} \rangle$

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

For a society consisting of the players i = 1, 2, ..., n, a *social welfare function (swf)* is a mapping

$$\begin{array}{rcccc} \langle - \mathcal{S}_w & : & \mathbb{P}^n & \to & \mathbb{P} \\ & & & & & & \rangle > \mathcal{S}_w \end{array}$$

where $\succ = \langle \stackrel{1}{\succ}, \stackrel{2}{\succ}, \dots, \stackrel{n}{\succ} \rangle$

The relation $\langle \succ \rangle_W$ is the *aggregate preference* (or *social welfare*) induced by the profile $\succ \in \mathbb{P}^n$.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

There are many different ways to aggregate preferences.

• If $A = \{a, b, c\}$, then \mathbb{P} has 6 elements:

a > b > c b > c > a c > b > aa > c > b b > a > c c > a > b

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

There are many different ways to aggregate preferences.

- If $A = \{a, b, c\}$, then \mathbb{P} has 6 elements:
 - a > b > c b > c > a c > b > aa > c > b b > a > c c > a > b
- For a society of n = 2 members, the number of swfs
 P² → P is

$$6^{36} \approx 10^{28}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Example 1: Utilitarianism of Jeremy Bentham

"The Greatest Pleasure Principle"

• given utilities $u_i : A \rightarrow [0, 1]$ for i = 1, 2, ..., n with

$$a \stackrel{'}{\succ} b \iff u_i(a) > u_i(b)$$

• derive $u : A \rightarrow [0, 1]$ as

$$u(x) = \sum_{i=1}^{n} \frac{u_i(x)}{n}$$

-

and set

$$a \geq \int_{W} b \iff u(a) > u(b)$$

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

・ロト・日本・山田・山田・山口・

Example 2: Borda Ranking

- Suppose that there are ℓ candidates in A.
- For each i, rename the candidates

$$A = \left\{ a_0^{(i)}, a_1^{(i)}, a_2^{(i)}, \dots a_{\ell-1}^{(i)} \right\}$$

so that

$$a_{\ell-1}^{(i)} \stackrel{i}{\succ} a_{\ell-2}^{(i)} \stackrel{i}{\succ} a_{\ell-3}^{(i)} \stackrel{i}{\succ} \cdots \stackrel{i}{\succ} a_{0}^{(i)}$$

and set

$$u_i\left(a_k^{(i)}
ight) = k$$

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

・ロト・西・・田・・田・・日・

Example 2: Borda Ranking

• Then derive $u : A \rightarrow \mathbb{R}$ as

$$u(x) = \sum_{i=1}^n u_i(x)$$

and set

$$a \geq \int_{W} b \iff u(a) > u(b)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Definition

A voting vector (or a procedure) for ℓ candidates is an $\ell\text{-tuple}$

$$(c_{\ell-1}, c_{\ell-2}, \ldots, c_0)$$

which is descending, i.e. $c_{i+1} \ge c_i$ for all *i*.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

- Suppose that there are ℓ candidates in A.
- Let $(c_{\ell-1}, c_{\ell-2}, \ldots, c_0)$ be a voting vector.
- For each i, rename the candidates

$$A = \left\{a_0^{(i)}, a_1^{(i)}, a_2^{(i)}, \dots a_{\ell-1}^{(i)}\right\}$$

so that

$$a_{\ell-1}^{(i)} \stackrel{i}{\succ} a_{\ell-2}^{(i)} \stackrel{i}{\succ} a_{\ell-3}^{(i)} \stackrel{i}{\succ} \cdots \stackrel{i}{\succ} a_{0}^{(i)}$$

and set

$$u_i(a_k^{(i)}) = c_k$$

II-8. Voting Dusko Pavlovic

Introduction

Welfare

Elections

くして 出 (日本)(日本)(日本)

• Then derive $u : A \rightarrow \mathbb{R}$ as

$$u(x) = \sum_{i=1}^n u_i(x)$$

and set

$$a \geq j_w b \iff u(a) > u(b)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Instances

- plurality vote: (1,0,...,0)
- antiplurality vote: (1, 1, ..., 1, 0)
- ► Borda ranking: (ℓ − 1, ℓ − 2,...,0)

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Ranking problem

Exercise

Consider again the preferences

voters	preference
3	a > b > c
2	a > c > b
2	b > c > a
4	c > b > a

Compute the aggregate rankings for the voting vectors: (1,0,0), (4,1,0), (7,2,0), (7,3,0), (2,1,0), (3,2,0), (1,1,0).

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Ranking problem

Solution

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

voting vector	ranking
(1,0,0)	a > c > b
(4,1,0)	$a \sim c > b$
(7,2,0)	c > a > b
(7,3,0)	$c > a \sim b$
(2,1,0)	c > b > a
(3,2,0)	$b \sim c > a$
(1,1,0)	b > c > a

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Notation

$$a > b = \{i \mid a > b\}$$

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ●

Theorem (K. Arrow)

Suppose that $\langle - \rangle_{W} : \mathbb{P}^{n} \to \mathbb{P}$ satisfies

Pareto or Unanimity Principle (UP):

$$\forall i.a \stackrel{i}{\succ} b \implies a (\succ)_w b$$

Independence of Irrelevant Alternatives (IIA):

$$a \geq b = a \exists b \land a \geq w b \implies a \exists w b$$

holds for every two profiles \succ , $\Box \in \mathbb{P}^n$.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

・ロト・日本・日本・日本・日本

Theorem (K. Arrow)

Then as soon as there are more than 2 candidates in *A*, there must exist a dictator, i.e. a voter *i* such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

holds for every preference profile $\succ \in \mathbb{P}^n$.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Remark

Note that the theorem does not say that the dictator has to actively *impose* his preferences.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Remark

Note that the theorem does not say that the dictator has to actively *impose* his preferences.

The theorem says that

- for every swf satisfying UP and IIA
- there is a voter who agrees with the social welfare for every preference profile of the society.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Condorcet requirement

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Definition

A swf $(-\zeta_w : \mathbb{P}^n \to \mathbb{P}$ satisfies the *Condorcet requirement* if

$$a \geq b \implies \#a > b \implies \#b > \#b > \#b > a$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Borda count violates Condorcet requirement

Example

Consider the preferences

voters	preference
30	a > b > c
1	a > c > b
29	b > a > c
10	b > c > a
10	c > a > b
1	c > b > a

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Borda count violates Condorcet requirement

Example

Consider the preferences

voters	preference
30	a > b > c
1	a > c > b
29	b > a > c
10	b > c > a
10	c > a > b
1	c > b > a

Then $b(109) \ i > j_w a(101) \ i > j_w c(33)$ but a(41) > b(40) and a(60) > c(21). II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Condorcet ranking

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Definition

Given a preference profile $\succ \in \mathbb{P}^n$, the *Condorcet ranking* \gg is defined by setting

 $a \gg b \iff \#a > b > \#b > \#b > a$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Condorcet ranking allows cycles

Example

Consider the preferences

voters	preference
23	a > b > c
2	b > a > c
17	b > c > a
10	c > a > b
8	c > b > a

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Condorcet ranking allows cycles

Example

Consider the preferences

voters	preference
23	a > b > c
2	b > a > c
17	b > c > a
10	c > a > b
8	c > b > a

Then

$a(33) \gg b(27)$ $b(42) \gg c(18)$ $c(35) \gg a(25)$

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Condorcet ranking allows cycles

Corollary

Condorcet ranking may not be transitive.

Proof

If Condorcet ranking were transitive, then $a \gg b$ and $b \gg c$ and $c \gg a$ would imply $a \gg a$.

But by the definition of Condorcet ranking, this would mean that $#a{>}a > #a{>}a$, which is impossible.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Outline

Introduction

Social welfare and preference aggregation

Social choice and manipulability

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Social choice

It is often

- ► not necessary to aggregate the individual preferences ⁱ> into a full social preference relation (>∫_w, but it is
- ▶ sufficient to elect the best candidate *c*, i.e. such that $c \wr > \int_W x$ for all $x \in A$.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Social choice function and relation

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Definition

A social choice function (scf) is a mapping $\langle - \rangle_f : \mathbb{P}^n \to A$.

A social choice relation (scr) is a mapping $(-\zeta_r) : \mathbb{P}^n \to \wp A.$

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Social choice function and relation

Example 1

A swf $(-)_w$ always induces a scr

$$c \in \langle \rangle_r \iff \forall x. c \rangle_w x$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

It induces a scf if the aggregate preferences have top elements.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Social choice function and relation

4

Example 2

If the space of alternative choices *A* can be presented in the form

$$A = \prod_{i=1}^{n} A_i$$

n

where each A_i is controlled by the player *i*, then the scr can be defined to be

$$\langle \succ \rangle_r = \{ \sigma \in A \mid \sigma BR \sigma \}$$

i.e. the social choices are the equilibria of the game.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Definition

A social function $\langle - \rangle_f : \mathbb{P}^n \to A$ is *manipulable* if there is a voter *i* and a preference profile $\succ \in \mathbb{P}^n$ such that

$(\Box S_f \xrightarrow{i} (>S_f$

where

$$\exists i = \left< \begin{pmatrix} 1, 2 \\ \succ, \succ, \dots, \exists, \dots \succ \end{pmatrix} \right>$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Definition

A social function $\langle - \rangle_f : \mathbb{P}^n \to A$ is *manipulable* if there is a voter *i* and a preference profile $\succ \in \mathbb{P}^n$ such that

$$(\exists S_f \stackrel{i}{\succ} (>S_f)$$

where

$$\exists_i = \left< \begin{pmatrix} 1, 2, \dots, \exists, \dots, \rangle \\ \succ, \succ, \dots, \exists, \dots, \succ \right> \right>$$

i.e., *i* can induce an \succeq -preferred social choice if she does not vote honestly, according to \succeq , but dishonestly, according to some $\stackrel{i}{\supset}$. Voting Dusko Pavlovic Introduction

II-8.

Welfare

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Terminology

A social choice function that is not manipulable is said to be *incentive compatible*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Theorem (Gibbard-Satterthwaite)

A surjective scf $(:)_f \mathbb{P}^n \to A$ between more than 2 candidates in A is either manipulable, or a dictatorship, or both.

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ● のへぐ

Exercise 1 (easy)

Prove that a scf is incentive compatible if and only if it is monotone, i.e. satisfies

$$a_0 \stackrel{i}{\underset{0}{\succ}} a_1$$
 and $a_1 \stackrel{i}{\underset{1}{\succ}} a_0$

whenever

$$a_0 = \langle \stackrel{1}{\succ}, \dots, \stackrel{i}{\flat}, \dots, \stackrel{n}{\succ} \rangle_f$$
$$a_1 = \langle \stackrel{1}{\succ}, \dots, \stackrel{i}{\flat}, \dots, \stackrel{n}{\succ} \rangle_f$$

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

・ロト・西ト・西ト・西ト・日・ション

Comment

The monotonicity of a scf $\langle - \rangle_f$ means that

• if changing only \sum_{0}^{i} to \sum_{1}^{i} causes the social choice to change from a_0 to a_1

► then the change must have been from $a_0 \stackrel{i}{\underset{0}{>}} a_1$ to $a_1 \stackrel{i}{\underset{1}{>}} a_0$. II-8. Voting

Dusko Pavlovic

Introduction

Welfare

II-8. Voting

Dusko Pavlovic

Introduction

Welfare

Elections

Exercise 2 (hard)

Derive the Gibbard-Satterthwaite Theorem from Arrow's Theorem.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶