Upshot

Dusko Pavlovic

What we studied

Missing link

Tasks

Security & Economics — Part 9 The upshot of what we studied (and what not)

Dusko Pavlovic

Spring 2014

Outline

What we studied

What we didn't study

Tasks

Upshot

Dusko Pavlovic

What we studied

Missing link

Tasks

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

What we studied

What we didn't study

Tasks

Upshot

Dusko Pavlovic

What we studied

Missing link

Tasks

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ●

Summary

Upshot

Dusko Pavlovic

What we studied

Missing link

Tasks

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Part I: Market of security

Capital investment in security

Summary

Part I: Market of security

- Capital investment in security we only did this
- Computational investment in security

Upshot

Dusko Pavlovic

What we studied

Missing link

Tasks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Summary

Part II: Security of market

- Market as a computational process
 - auctions
 - matching
 - intermediaries
- Information asymmetry
- Network effects

positive: self-fulfilling expectations, tipping point negative: minority game

Social welfare and social choice

Upshot

Dusko Pavlovic

What we studied

Missing link

Outline

What we studied

What we didn't study

Security process is a market process

Cost basis of security

Economy of cryptography

Tasks

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Tasks

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Market process

- Ms Alice Dobbs often goes shopping.
 - She seeks buying deals and opportunities.
- She is looking for goods priced below her utility.
 - The total cost must fit into her budget and maximize her utility.
- The sellers decrease their prices in response to buyers' choices.
 - They seek to clear the market at maximal prices.

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Security process

- Mr Bob Dobbs occasionally hacks into a web site.
 - He seeks hacking deals and opportunities.
- He is looking for cyber assets where the amount of effort needed to hack them is smaller than the potential profit.
 - The total effort must fit into Bob's budget of computing and programming resources, and maximize his utility.
- Security engineers strengthen their protections in response to attackers' choices.
 - They seek to keep their assets protected at a minimal cost.

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Similarities of market and security

- The buyers and the hackers are seeking to solve the same optimization problem.
- The sellers and the security engineers are seeking to solve *dual* optimization problems.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- the same methods
- cf. English vs Dutch auctions

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Differences of market and security processes

- The market prices are uniformly expressed in terms of money.
- The strength of security protections is expressed in terms of
 - the computational effort and
 - the programming effort

needed to break them.

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Tasks

・ロト・西ト・西ト・日・ つくぐ

Security by cryptography

is based on computational cost

- Computational cost is thought to be a solid foundation for security
 - Cryptanalysis is hard.
 - Computational hardness is a robust measure of effort
 - One-way functions are a tool to impose pricing in computational effort

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Tasks

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Security by cryptography

is based on computational cost

- Computational cost is thought to be a solid foundation for security
 - Cryptanalysis is hard.
 - Computational hardness is a robust measure of effort
 - One-way functions are a tool to impose pricing in computational effort
- Cryptography implements the economy of computational effort

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Security by obscurity

is based on programming cost

- Programming cost is not thought to be a solid foundation for security
 - Reverse engineering is easy.
 - Logical hardness of attack derivations is not robust, or not well understood.

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Tasks

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Security by obscurity

is based on programming cost

- Programming cost is not thought to be a solid foundation for security
 - Reverse engineering is easy.
 - Logical hardness of attack derivations is not robust, or not well understood.
- Nevertheless, the economy of programming cost plays a substantial role both for the hackers and for the security engineers.

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Economy of cryptography

balances diverse types of values

- value of secured assets
- computational strength of security protections
- value of the applied cryptographic protections

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis

Ecocryp

Claims

- Security is not an aspect of economics
- Economics is not an aspect of security

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis

Ecocryp

Tasks

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Claims

- Security is not an aspect of economics
- Economics is not an aspect of security

- Economics is security
 - An asset is an asset only if it can be secured.
- Security is economics
 - A protection is effective only if it is cost effective.

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis Ecocryp

Tasks

・ロト・日本・日本・日本・日本・日本・日本

Conclusion

 Security and cryptography are governed by the same forces as the market of goods and services. Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis

Ecocryp

Tasks

・ロト・日本・モート ヨー もくの

Conclusion

- Security and cryptography are governed by the same forces as the market of goods and services.
- It is up to our governments to reconcile their views of security and cryptography with their views of the market:
 - Are they efficient and self-balancing, or inefficient and depression prone?
 - Are the values and technologies global or local?
 - Are centralization and regulation beneficial or harmful?

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis

Ecocryp

Conclusion

- Diverse answers to these questions can be reasonably supported.
- The same answers must be supported for security and for the market.

Upshot

Dusko Pavlovic

What we studied

Missing link

Security process

Cost basis

Ecocryp

Tasks

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Outline

What we studied

What we didn't study

Tasks

Upshot

Dusko Pavlovic

What we studied

Missing link

Tasks

シック・ 川 ・ 川 ・ 川 ・ 一日・

Tasks

Upshot

Dusko Pavlovic

What we studied

Missing link

Tasks

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Security: Protect the organization from the world Economy: Protect the world from the organization